A provenance-based approach to manage long term preservation of scientific data

被引:0
|
作者
Sousa, Renato Beserra [1 ]
Cugler, Daniel Cintra [1 ]
Malaverri, Joana Esther Gonzales [1 ]
Medeiros, Claudia Bauzer [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
来源
2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW) | 2014年
关键词
ANURA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Long term preservation of scientific data goes beyond the data, and extends to metadata preservation and curation. While several researchers emphasize curation processes, our work is geared towards assessing the quality of scientific (meta) data. The rationale behind this strategy is that scientific data are often accessible via metadata - and thus ensuring metadata quality is a means to provide long term accessibility. This paper discusses our quality assessment architecture, presenting a case study on animal sound recording metadata. Our case study is an example of the importance of periodically assessing (meta) data quality, since knowledge about the world may evolve, and quality decrease with time, hampering long term preservation.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [1] Provenance-based Scientific Workflow Search
    Abu Jabal, Amani
    Bertino, Elisa
    de Mel, Geeth
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 119 - 127
  • [2] A provenance-based approach to evaluate data quality in eScience
    Gonzales Malaverri, J.E. (jmalav09@ic.unicamp.br), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (09):
  • [3] Provenance-based Data Skipping
    Niu, Xing
    Glavic, Boris
    Liu, Ziyu
    Li, Pengyuan
    Gawlick, Dieter
    Krishnaswamy, Vasudha
    Liu, Zhen Hua
    Porobic, Danica
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 15 (03): : 451 - 464
  • [4] Evaluating provenance-based trust for scientific workflows
    Rajbhandari, Shrija
    Wootten, Ian
    Ali, Shaikh Ali
    Rana, Omer F.
    SIXTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID: SPANNING THE WORLD AND BEYOND, 2006, : 365 - +
  • [5] Provenance-Based Object Storage Prediction Scheme for Scientific Big Data Applications
    Dai, Dong
    Chen, Yong
    Kimpe, Dries
    Ross, Rob
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 271 - 280
  • [6] ProvCite: Provenance-based Data Citation
    Wu, Yinjun
    Alawini, Abdussalam
    Deutch, Daniel
    Milo, Tova
    Davidson, Susan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (07): : 738 - 751
  • [7] A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows
    Crawl, Daniel
    Altintas, Ilkay
    PROVENANCE AND ANNOTATION OF DATA AND PROCESSES, 2008, 5272 : 152 - 159
  • [8] PBWA:A Provenance-Based What-If Analysis Approach for Data Mining Processes
    KE Jie
    DONG Hongbin
    TAN Chengyu
    LIANG Yiwen
    ChineseJournalofElectronics, 2017, 26 (05) : 986 - 992
  • [9] A Provenance-based Solution for Software Selection in Scientific Software Sharing
    Huang, Xing
    Lu, Tun
    Ding, Xianghua
    Liu, Tiejiang
    Gu, Ning
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 172 - 177
  • [10] Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach
    Thaylon Guedes
    Leonardo A. Jesus
    Kary A. C. S. Ocaña
    Lucia M. A. Drummond
    Daniel de Oliveira
    Cluster Computing, 2020, 23 : 123 - 148