Group theoretic conditions for existence of robust relative homoclinic trajectories

被引:7
作者
Ashwin, P
Montaldi, J
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] CNRS, INLN, F-06560 Valbonne, France
关键词
D O I
10.1017/S0305004101005801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider robust relative homoclinic trajectories (RHTS) for G-equivariant vector fields. We give some conditions on the group and representation that imply existence of equivariant vector fields with such trajectories. Using these results we show very simply that abelian groups cannot exhibit relative homoclinic trajectories. Examining a set of group theoretic conditions that imply existence Of RHTS, we construct some new examples of robust relative homoclinic trajectories. We also classify RHTS of the dihedral and low order symmetric groups by means of their symmetries.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 10 条
[1]  
Dias APS, 2000, DYNAM STABIL SYST, V15, P353, DOI 10.1080/02681110010001252
[2]   Coupled cells with internal symmetry .1. Wreath products [J].
Dionne, B ;
Golubitsky, M ;
Stewart, I .
NONLINEARITY, 1996, 9 (02) :559-574
[3]  
FIELD M, 1996, PITMAN RES NOTES MAT, V356
[4]  
FIELD M, 1996, MEM AMS, V574
[5]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[6]   BACK IN THE SADDLE AGAIN - A COMPUTER-ASSISTED STUDY OF THE KURAMOTO-SIVASHINSKY EQUATION [J].
KEVREKIDIS, IG ;
NICOLAENKO, B ;
SCOVEL, JC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (03) :760-790
[7]   ASYMPTOTIC STABILITY OF HETEROCLINIC CYCLES IN SYSTEMS WITH SYMMETRY [J].
KRUPA, M ;
MELBOURNE, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :121-147
[8]   HETEROCLINIC CYCLES INVOLVING PERIODIC-SOLUTIONS IN MODE INTERACTIONS WITH O(2) SYMMETRY [J].
MELBOURNE, I ;
CHOSSAT, P ;
GOLUBITSKY, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 113 :315-345
[9]   THE STRUCTURE OF SYMMETRICAL ATTRACTORS [J].
MELBOURNE, I ;
DELLNITZ, M ;
GOLUBITSKY, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :75-98
[10]  
Schwarz G. W., 1980, Publ. Math. Inst. Hautes Etudes Sci, V51, P37