Surface and interface engineering in CO2-philic based UiO-66-NH2-PEI mixed matrix membranes via covalently bridging PVP for effective hydrogen purification

被引:52
作者
Ashtiani, S. [1 ]
Khoshnamvand, M. [3 ,4 ]
Bousa, D. [2 ]
Sturala, J. [2 ]
Sofer, Z. [2 ]
Shaliutina-Kolesova, A. [5 ]
Gardeno, D. [1 ]
Friess, K. [1 ]
机构
[1] Univ Chem & Technol, Dept Phys Chem, Tech 5, Prague 16628 6, Czech Republic
[2] Univ Chem & Technol, Dept Inorgan Chem, Tech 5, Prague 16628 6, Czech Republic
[3] Chinese Acad Sci, State Key Lab Environm Chem & Ecotoxicol, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Univ South Bohemia Ceske Budejovice, Fac Fisheries & Protect Waters, South Bohemian Res Ctr Aquaculture & Biodivers Hy, Zatisi 728-2, Vodnany 38925, Czech Republic
关键词
Metal-organic framework; UiO-66-NH2; Mixed-matrix membrane; Polymer-filler interaction; Facilitated transport membrane; Hydrogen purification; METAL-ORGANIC FRAMEWORK; FACILITATED TRANSPORT; PERFORMANCE; SEPARATION; CO2; COMPOSITE; CAPTURE; POLYMER; FILLERS; SILICA;
D O I
10.1016/j.ijhydene.2020.11.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the fabrication of the defect-free mixed-matrix membrane (MMM) based on the polyethylenimine (PEI) matrix with uniformly dispersed metal-organic framework (MOF) filler UiO-66-NH2, covalently bonded by polyvinylpyrrolidone (PVP). The key feature of the molecular level-controlled filler deposition in prepared UiO-66-NH2-PVP-PEI membranes was bridging the MOF particles to the PEI polymer matrix via PVP polymer chains. Such an approach improved the polymer-filler interface interactions and boosted the MOF dispersion into the polymer matrix for higher MOF loadings up to 23 wt %. The overall membrane structure and properties were characterized using FTIR, XRD, TG, DSC, SEM and 3D optical profiler techniques. Obtained results revealed the uniform dispersion of UiO-66-NH2, the strong polymer-filler interface interactions and entanglement of PEI with UiO-66-NH2-PVP. Furthermore, the outstanding CO2/H-2 separation performance was determined for the UiO-66-NH2-PVP-PEI membrane with 18 wt % of MOF loading; the average CO2 permeability of 394 Barrer and the separation factor of 12 for circa 100 h of the membrane testing overcome the 2008 Robeson reverse upper bound limit. Such improved CO2/H-2 separation performance was achieved due to the combination of the diffusion-solution mechanism with the preferential adsorption of the CO2 via the reversible bicarbonate reaction with amino groups of the UiO-66-NH2 and PEI which acts as fixed CO2 carrier sites in MMM structure. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5449 / 5458
页数:10
相关论文
共 34 条
[1]   Production of hydrogen-rich syngas from novel processes for gasification of petroleum cokes and coals [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (20) :11577-11592
[2]   Co0.5Ni0.5FeCrO4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification [J].
Ashtiani, S. ;
Khoshnamvand, M. ;
Shahutina-Kolesova, A. ;
Bousa, D. ;
Sofer, Z. ;
Friess, K. .
CHEMOSPHERE, 2020, 255
[3]   Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J].
Barelli, L. ;
Bidini, G. ;
Gallorini, F. ;
Servili, S. .
ENERGY, 2008, 33 (04) :554-570
[4]   Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review [J].
Bastani, Dariush ;
Esmaeili, Nazila ;
Asadollahi, Mahdieh .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (02) :375-393
[5]   The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters [J].
Bula, Karol ;
Jesionowski, Teofil ;
Krysztafkiewicz, Andrzej ;
Janik, Jolanta .
COLLOID AND POLYMER SCIENCE, 2007, 285 (11) :1267-1273
[6]   Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 [J].
Bushell, Alexandra F. ;
Attfield, Martin P. ;
Mason, Christopher R. ;
Budd, Peter M. ;
Yampolskii, Yuri ;
Starannikova, Ludmila ;
Rebrov, Alexander ;
Bazzarelli, Fabio ;
Bernardo, Paola ;
Jansen, Johannes Carolus ;
Lanc, Marek ;
Friess, Karel ;
Shantarovich, Victor ;
Gustov, Vadim ;
Isaeva, Vera .
JOURNAL OF MEMBRANE SCIENCE, 2013, 427 :48-62
[7]   Enhanced performance of mixed matrix membrane by incorporating a highly compatible covalent organic framework into poly(vinylamine) for hydrogen purification [J].
Cao, Xiaochang ;
Qiao, Zhihua ;
Wang, Zhi ;
Zhao, Song ;
Li, Panyuan ;
Wang, Jixiao ;
Wang, Shichang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (21) :9167-9174
[8]   Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach [J].
Chen, Wei-Hsin ;
Chen, Shu-Mi ;
Hung, Chen-I .
APPLIED ENERGY, 2013, 111 :731-741
[9]   Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J].
Deng, Liyuan ;
Kim, Taek-Joong ;
Haegg, May-Britt .
JOURNAL OF MEMBRANE SCIENCE, 2009, 340 (1-2) :154-163
[10]   Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies [J].
Dou, Binlin ;
Zhang, Hua ;
Cui, Guomin ;
Wang, Zilong ;
Jiang, Bo ;
Wang, Kaiqiang ;
Chen, Haisheng ;
Xu, Yujie .
ENERGY CONVERSION AND MANAGEMENT, 2018, 155 :243-252