Full algebras of matrices

被引:4
作者
Cigler, Grega [1 ]
Jerman, Marjan [1 ]
Wojciechowski, Piotr J. [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
Algebra of matrices; transitive graph; lattice order;
D O I
10.1080/03081087.2018.1460792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classification of full algebras of matrices is given. All such algebras are permutation-isomorphic to block lower-triangular matrices with corresponding subdiagonal blocks being either zero-blocks or full. Two full algebras are isomorphic if and only if they are permutation-isomorphic. A one-to-one correspondence is provided between the full algebras and transitive directed graphs. It is also proven that such algebras, if endowed with a lattice order, can be almost f- or d-algebras only if they are diagonal.
引用
收藏
页码:1511 / 1521
页数:11
相关论文
共 5 条
[1]   ALMOST F-ALGEBRAS AND D-ALGEBRAS [J].
BERNAU, SJ ;
HUIJSMANS, CB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 :287-308
[2]  
Brualdi R. A., 1991, Encyclopedia of Mathematics and Its Applications
[3]   Signature matrix algebras and bipartite graphs [J].
Holguin, Valeria Aguirre ;
Wojciechowski, Piotr J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 :97-106
[4]  
Ma J, 2014, LECT NOTES ORDERED A
[5]  
Sloane, ENCY INTEGER SEQUENC