Enhancing Electrochemical Performance of High Voltage (4.5 V) Graphite/LiNi0.5Co0.2Mn0.3O2 Cell by Tailoring Cathode Interface

被引:21
作者
Hong, Pengbo [1 ]
Xu, Mengqing [1 ,2 ]
Chen, Dongrui [1 ]
Chen, Xiaoqiao [1 ]
Xing, Lidan [1 ,2 ]
Huang, Qiming [1 ]
Li, Weishan [1 ,2 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Engn Res Ctr MTEES, Res Ctr BMET Guangdong Prov,Key Lab ETESPG GHEI, Engn Lab OFMHEB Guangdong Prov,Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM BIS(OXALATO) BORATE; LI-ION BATTERIES; CYCLING PERFORMANCE; LINI0.5CO0.2MN0.3O2; CATHODE; SIGNIFICANT IMPROVEMENT; CAPACITY RETENTION; HIGH-TEMPERATURE; ELECTROLYTE; SURFACE; OXIDE;
D O I
10.1149/2.0531702jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this study, a novel nitrile-based compound, ethylene glycol bis (propionitrile) ether (EGBE) has been investigated as a cathode film forming additive. Electrochemical performance of graphite/LiNi0.5Mn0.3Co0.2O2 full cell with 1.0 M LiPF6 EC/EMC (3/7, v/v) w/o EGBE additive electrolyte has been evaluated. The initial discharge capacity of the cell with EGBE added electrolyte is slightly lower than the cell without EGBE; while the cell with 1.0 wt% EGBE added electrolyte has superior cycling stability than the cell with baseline electrolyte upon cycling at 4.5 V (vs. Li/Li+), specifically, 82% and 42% capacity retention after 80 cycles, respectively. Ex-situ characterizations on the electrodes extracted from graphite/LiNi0.5Mn0.3Co0.2O2 cell were conducted via a combination of multi-techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma spectroscopy (ICP-MS) as well. The improved cycling performance is ascribed to the desired surface layer built-up on electrode surface via the sacrificial decomposition of the EGBE additive. This tailored surface layer is more robust and stable than the surface film generated from baseline electrolyte decomposition, thus can stabilize the electrode/electrolyte interface, mitigate electrolyte decomposition and inhibit transition metal dissolution from the bulk cathode material upon cycling at 4.5 V. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A137 / A144
页数:8
相关论文
共 49 条
[1]   New electrolytes based on glutaronitrile for high energy/power Li-ion batteries [J].
Abu-Lebdeh, Yaser ;
Davidson, Isobel .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :576-579
[2]   The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2 [J].
Bai, Yansong ;
Wang, Xianyou ;
Yang, Shunyi ;
Zhang, Xiaoyan ;
Yang, Xiukang ;
Shu, Hongbo ;
Wu, Qiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 541 :125-131
[3]   Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries [J].
Chen, Zhongxue ;
Qiu, Shen ;
Cao, Yuliang ;
Ai, Xinping ;
Xie, Kai ;
Hong, Xiaobin ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17768-17772
[4]   Significant Improvement of LiNi0.8Co0.15Al0.05O2 Cathodes at 60°C by SiO2 Dry Coating for Li-Ion Batteries [J].
Cho, Yonghyun ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :A625-A629
[5]   XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Gireaud, L ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A689-A696
[6]   Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes [J].
Deng, Z. Q. ;
Manthiram, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :7097-7103
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[9]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176