Tobit regression model;
model selection;
information criteria;
bootstrap sampling;
variable selection;
INFORMATION;
D O I:
10.1080/00949655.2020.1856848
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
The statistical regression technique is an essential data fitting tool to explore the generation mechanism of the random phenomenon. Therefore, the model selection technique is becoming important. Meanwhile, bootstrap-based sample augmentation mechanisms are becoming indispensable when the reliable statistical inference of the model selection is expected to be made when the sample size is unsufficient. In this paper, the model selection performance of the bootstrap-based model selection criteria on the Tobit regression model are compared through the intensive Monte Carlo simulation experimentation. The simulation experiment demonstrates that the model identification risk of the recommended bootstrap-based model selection criteria can be adequately compensated by increasing the scientific computation cost in terms of the different bootstrap sample augmentation mechanisms. The recommended bootstrap-based model selection criterion is applied to fit the fidelity dataset.
机构:
Univ Fed Santa Maria, Dept Estat, BR-97119900 Santa Maria, RS, Brazil
Univ Fed Santa Maria, LACESM, BR-97119900 Santa Maria, RS, BrazilUniv Fed Santa Maria, Dept Estat, BR-97119900 Santa Maria, RS, Brazil
Bayer, Fabio M.
Cribari-Neto, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Pernambuco, Dept Estat, Recife, PE, BrazilUniv Fed Santa Maria, Dept Estat, BR-97119900 Santa Maria, RS, Brazil
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Zhang, Xinyu
Wan, Alan T. K.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Wan, Alan T. K.
Zhou, Sherry Z.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
NE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
Ji, Yonggang
Lin, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Math, St Louis, MO 63130 USANE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
Lin, Nan
Zhang, Baoxue
论文数: 0引用数: 0
h-index: 0
机构:
NE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China
NE Normal Univ, Sch Math & Stat, Changchun, Peoples R ChinaNE Normal Univ, Key Lab Appl Stat MOE, Changchun, Peoples R China