On the Lp-theory of CO-semigroups associated with second-order elliptic operators, I

被引:25
作者
Sobol, Z
Vogt, H
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Tech Univ Dresden, Inst Anal, Fachrichtung Math, D-8027 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jfan.2001.3908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L-p-theory of second-order elliptic divergence-type operators with measurable coefficients To this end. we introduce a new method of constructing. positive C-0-semigroups on L-p associated with sesquilinear (not necessarily sectorial) forms in L, A precise condition ensuring that the elliptic operator is associated with a quasi-contractive C-0-semigroup on L-p is established (C) 2002 Elsevier Science (USA).
引用
收藏
页码:24 / 54
页数:31
相关论文
共 50 条
[31]   On second-order periodic elliptic operators in divergence form [J].
ter Elst, AFM ;
Robinson, DW ;
Sikora, A .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) :569-637
[32]   Eigenvalue asymptotics for second-order elliptic operators on networks [J].
von Belowa, Joachim ;
Lubary, Jose A. .
ASYMPTOTIC ANALYSIS, 2012, 77 (3-4) :147-167
[33]   On second-order periodic elliptic operators in divergence form [J].
Ter Elst A.F.M. ;
Robinson D.W. ;
Sikora A. .
Mathematische Zeitschrift, 2001, 238 (3) :569-637
[34]   Homogenization of generalized second-order elliptic difference operators [J].
Simas, Alexandre B. ;
Valentim, Fabio J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) :3709-3753
[35]   A quantitative Carleman estimate for second-order elliptic operators [J].
Nakic, Ivica ;
Rose, Christian ;
Tautenhahn, Martin .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) :915-938
[36]   On second-order almost-periodic elliptic operators [J].
Dungey, N ;
ter Elst, AFM ;
Robinson, DW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :735-753
[37]   ESSENTIAL SPECTRUM OF SECOND-ORDER DEGENERATE ELLIPTIC OPERATORS [J].
EVANS, WD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (AUG) :463-482
[38]   Numerical verifications for eigenvalues of second-order elliptic operators [J].
M. T. Nakao ;
N. Yamamoto ;
K. Nagatou .
Japan Journal of Industrial and Applied Mathematics, 1999, 16 :307-320
[39]   Numerical verifications for eigenvalues of second-order elliptic operators [J].
Nakao, MT ;
Yamamoto, N ;
Nagatou, K .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 1999, 16 (03) :307-320
[40]   Perturbation Theory for Solutions to Second Order Elliptic Operators with Complex Coefficients and the Lp Dirichlet Problem [J].
Martin Dindoš ;
Jill Pipher .
Acta Mathematica Sinica, English Series, 2019, 35 :749-770