On the Lp-theory of CO-semigroups associated with second-order elliptic operators, I

被引:25
作者
Sobol, Z
Vogt, H
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Tech Univ Dresden, Inst Anal, Fachrichtung Math, D-8027 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jfan.2001.3908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L-p-theory of second-order elliptic divergence-type operators with measurable coefficients To this end. we introduce a new method of constructing. positive C-0-semigroups on L-p associated with sesquilinear (not necessarily sectorial) forms in L, A precise condition ensuring that the elliptic operator is associated with a quasi-contractive C-0-semigroup on L-p is established (C) 2002 Elsevier Science (USA).
引用
收藏
页码:24 / 54
页数:31
相关论文
共 19 条
[1]  
[Anonymous], SEMINAIRE THEORIE PO
[2]  
[Anonymous], 1996, DIFFERENTIAL INTEGRA
[3]  
Beliy A., 1990, SIBERIAN MATH J, V31, P16
[4]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158
[5]  
Kato T., 1980, PERTURBATION THEORY
[6]   CO-SEMIGROUPS IN LP(RD) AND C(RD) SPACES GENERATED BY THE DIFFERENTIAL EXPRESSION DELTA + B-DEL [J].
KOVALENKO, VF ;
SEMENOV, YA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1990, 35 (03) :443-453
[7]   Dominated semigroups with singular complex potentials [J].
Liskevich, V ;
Manavi, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :281-305
[8]   On the Lp-theory of CO-semigroups associated with second-order elliptic operators, II [J].
Liskevich, V ;
Sobol, Z ;
Vogt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (01) :55-76
[9]  
Ma Z. M., 1992, INTRO THEORY NONSYMM
[10]  
MANAVI A, 2001, THESIS