Dual Autoencoder Network for Retinex-Based Low-Light Image Enhancement

被引:108
作者
Park, Seonhee [1 ]
Yu, Soohwan [1 ]
Kim, Minseo [1 ]
Park, Kwanwoo [1 ]
Paik, Joonki [1 ]
机构
[1] Chung Ang Univ, Grad Sch Adv Imaging Sci Multimedia & Film, Dept Image, Seoul 06974, South Korea
来源
IEEE ACCESS | 2018年 / 6卷
基金
新加坡国家研究基金会;
关键词
Autoencoder; image processing; image enhancement; neural networks; variational retinex model; unsupervised learning; VARIATIONAL FRAMEWORK; MODEL;
D O I
10.1109/ACCESS.2018.2812809
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a dual autoencoder network model based on the retinex theory to perform the low-light enhancement and noise reduction by combining the stacked and convolutional autoencoders. The proposed method first estimates the spatially smooth illumination component which is brighter than an input low-light image using a stacked autoencoder with a small number of hidden units. Next, we use a convolutional autoencoder which deals with 2-D image information to reduce the amplified noise in the brightness enhancement process. We analyzed and compared roles of the stacked and convolutional autoencoders with the constraint terms of the variational retinex model. In the experiments, we demonstrate the performance of the proposed algorithm by comparing with the state-of-the-art existing low-light and contrast enhancement methods.
引用
收藏
页码:22084 / 22093
页数:10
相关论文
共 26 条
  • [1] [Anonymous], 2008, ICML 08, DOI 10.1145/1390156.1390294
  • [2] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [3] Stacked Convolutional Denoising Auto-Encoders for Feature Representation
    Du, Bo
    Xiong, Wei
    Wu, Jia
    Zhang, Lefei
    Zhang, Liangpei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 1017 - 1027
  • [4] A Probabilistic Method for Image Enhancement With Simultaneous Illumination and Reflectance Estimation
    Fu, Xueyang
    Liao, Yinghao
    Zeng, Delu
    Huang, Yue
    Zhang, Xiao-Ping
    Ding, Xinghao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 4965 - 4977
  • [5] Fu XY, 2013, IEEE GLOB CONF SIG, P1085, DOI 10.1109/GlobalSIP.2013.6737082
  • [6] Gondara L, 2016, INT CONF DAT MIN WOR, P241, DOI [10.1109/ICDMW.2016.102, 10.1109/ICDMW.2016.0041]
  • [7] LIME: Low-Light Image Enhancement via Illumination Map Estimation
    Guo, Xiaojie
    Li, Yu
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 982 - 993
  • [8] Hase H., 1988, Transactions of the Institute of Electronics, Information and Communication Engineers D, VJ71D, P1048
  • [9] Jiang XS, 2013, IEEE IMAGE PROC, P553, DOI 10.1109/ICIP.2013.6738114
  • [10] A multiscale retinex for bridging the gap between color images and the human observation of scenes
    Jobson, DJ
    Rahman, ZU
    Woodell, GA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (07) : 965 - 976