OPTIMAL ERROR ESTIMATES OF THE DIRECT DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS

被引:58
作者
Liu, Hailiang [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50010 USA
基金
美国国家科学基金会;
关键词
Convection-diffusion equations; discontinuous Galerkin; global projection; numerical flux; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; SMOOTH SOLUTIONS;
D O I
10.1090/S0025-5718-2015-02923-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the optimal L-2-error estimate of O(h(k+1)) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to use some global projections satisfying interface conditions dictated by the choice of numerical fluxes so that trouble terms at the cell interfaces are eliminated or controlled. In multi-dimensional case, the orders of k + 1 hinge on a superconvergence estimate when tensor product polynomials of degree k are used on Cartesian grids. A collection of projection errors in both one- and multi-dimensional cases is established.
引用
收藏
页码:2263 / 2295
页数:33
相关论文
共 41 条
[1]  
[Anonymous], 1973, TRIANGULAR MESH METH
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[5]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[6]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[7]   CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION [J].
Bona, J. L. ;
Chen, H. ;
Karakashian, O. ;
Xing, Y. .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1401-1432
[8]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[9]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[10]  
Castillo P, 2000, LECT NOTES COMP SCI, V11, P285