NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS WITH CONVECTION

被引:9
作者
Candito, Pasquale [1 ]
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S.
机构
[1] Univ Reggio Calabria, Dept DICEAM, Via Graziella Feo Di Vito, I-8912 Reggio Di Calabria, Italy
基金
欧盟地平线“2020”;
关键词
Leray-Schauder alternative principle; nonlinear regularity; compact map; nonlinear maximum principle; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; DEPENDENCE; INDEFINITE;
D O I
10.5186/aasfm.2019.4438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Robin problem driven by a nonlinear, nonhomogeneous differential operator with a drift term (convection) and a Caratheodory perturbation. Assuming that the drift coefficient is positive and using a topological approach based on the Leray-Schauder alternative principle, we show that the problem has a positive smooth solution.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 21 条
[1]   Nonlinear nonhomogeneous Robin problems with dependence on the gradient [J].
Bai, Yunru ;
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
BOUNDARY VALUE PROBLEMS, 2018, :1-24
[2]  
De Figueiredo D, 2004, DIFFER INTEGRAL EQU, V17, P119
[3]   Positive solutions of quasi-linear elliptic equations with dependence on the gradient [J].
Faraci, F. ;
Motreanu, D. ;
Puglisi, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :525-538
[4]   COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Motreanu, Dumitru .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :687-698
[5]   The Brezis-Oswald Result for Quasilinear Robin Problems [J].
Fragnelli, Genni ;
Mugnai, Dimitri ;
Papageorgiou, Nikolaos S. .
ADVANCED NONLINEAR STUDIES, 2016, 16 (03) :603-622
[6]  
GASINSKI L., 2006, NONLINEAR ANAL
[7]   Positive solutions for the Robin p-Laplacian problem with competing nonlinearities [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (01) :31-56
[8]   Resonant Robin problems with indefinite and unbounded potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) :848-878
[9]   Positive solutions for nonlinear elliptic problems with dependence on the gradient [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) :1451-1476
[10]   Positive Solutions for Nonlinear Nonhomogeneous Robin Problems [J].
Gasinski, Leszek ;
O'Regan, Donal ;
Papageorgiou, Nikolaos S. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04) :435-458