REAL LIE GROUPS AND O-MINIMALITY

被引:0
|
作者
Conversano, Annalisa [1 ]
Onshuus, Alf [2 ]
Post, Sacha [2 ]
机构
[1] Massey Univ Auckland, Sch Math & Computat Sci, MS Bldg,Private Bag 102904, North Shore City 0745, New Zealand
[2] Univ Los Andes, Dept Matemat, Bogota, Colombia
关键词
Real Lie groups; o-minimality; definable groups;
D O I
10.1090/proc/15847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize, up to Lie isomorphism, the real Lie groups that are definable in an o-minimal expansion of the real field. For any such group, we find a Lie-isomorphic group definable in R-exp for which any Lie automorphism is definable.
引用
收藏
页码:2701 / 2714
页数:14
相关论文
共 50 条
  • [1] Generalizations of o-Minimality
    K. Zh. Kudaibergenov
    Siberian Advances in Mathematics, 2024, 34 (3) : 231 - 236
  • [2] Connected components of definable groups, and o-minimality II
    Conversano, Annalisa
    Pillay, Anand
    ANNALS OF PURE AND APPLIED LOGIC, 2015, 166 (7-8) : 836 - 849
  • [3] What is o-minimality?
    Friedman, Harvey M.
    ANNALS OF PURE AND APPLIED LOGIC, 2008, 156 (01) : 59 - 67
  • [4] On minimal flows, definably amenable groups, and o-minimality
    Pillay, Anand
    Yao, Ningyuan
    ADVANCES IN MATHEMATICS, 2016, 290 : 483 - 502
  • [5] CAYLEY'S THEOREM FOR ORDERED GROUPS: O-MINIMALITY
    Baizhanov, Bektur
    Baldwin, John
    Verbovskiy, Viktor
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2007, 4 : 278 - 281
  • [6] CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY
    Dolich, Alfred
    Miller, Chris
    Savatovsky, Alex
    Thamrongthanyalak, Athipat
    JOURNAL OF SYMBOLIC LOGIC, 2022, 87 (03) : 1243 - 1259
  • [7] Connected components of definable groups and o-minimality I
    Conversano, Annalisa
    Pillay, Anand
    ADVANCES IN MATHEMATICS, 2012, 231 (02) : 605 - 623
  • [8] HODGE THEORY AND O-MINIMALITY
    Fresan, Javier
    ASTERISQUE, 2021, (430) : 131 - 157
  • [9] Finiteness property implies O-minimality
    Lion, JM
    JOURNAL OF SYMBOLIC LOGIC, 2002, 67 (04) : 1616 - 1622
  • [10] O-minimality and Diophantine geometry
    Pila, Jonathan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 547 - 572