A Novel Sparse Penalty for Singular Value Decomposition

被引:2
作者
Wang Caihua [1 ]
Liu Juan [1 ]
Min Wenwen [1 ]
Qu Aiping [1 ]
机构
[1] Wuhan Univ, Sch Comp, State Key Lab Software Engn, Wuhan 430072, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Sparse controllable projection (SCP); Sparse singular value decomposition (SSVD); Sparse low rank matrix approximation (SLRMA); CLIPPED ABSOLUTE DEVIATION; ADAPTIVE LASSO; SELECTION;
D O I
10.1049/cje.2017.01.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Singular value decomposition (SVD) is a tool widely used in data denoising, matrix approximation, recommendation system, text mining and computer vision. A majority of applications prefer sparse singular vectors to capture inherent structures and patterns of the input data so that the results are interpretable. We present a novel penalty for SVD to achieve sparsity. Comparing with the traditional penalties, the proposed penalty is scale, dimensional insensitive and bounded between 0 and 1, which are in favor of controlling sparsity. Regulated by the penalty, we provide an efficient algorithm to project a vector onto a given sparse level in O(n) expected time. The efficient projection algorithm serve as a drudge for sparse SVD (SSVD). In experiments, SSVD is efficient and could capture the latent structures and patterns of the input data.
引用
收藏
页码:306 / 312
页数:7
相关论文
共 27 条
  • [1] A Generalized Least-Square Matrix Decomposition
    Allen, Genevera I.
    Grosenick, Logan
    Taylor, Jonathan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 145 - 159
  • [2] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [3] Bach F., 2008, CONVEX SPARSE MATRIX
  • [4] Using linear algebra for intelligent information retrieval
    Berry, MW
    Dumais, ST
    OBrien, GW
    [J]. SIAM REVIEW, 1995, 37 (04) : 573 - 595
  • [5] d'Aspremont A., 2005, ADV NEURAL INFORM PR, V49, P434
  • [6] DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
  • [7] 2-9
  • [8] Duchi J., 2008, P 25 INT C MACH LEAR, P272, DOI DOI 10.1145/1390156.1390191
  • [9] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [10] The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions
    Huang, Jianhua Z.
    Shen, Haipeng
    Buja, Andreas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1609 - 1620