Controlling Contact-Rich Manipulation Under Partial Observability

被引:0
|
作者
Wirnshofer, Florian [1 ]
Schmitt, Philipp S. [1 ]
Wichert, Georg, V [1 ]
Burgard, Wolfram [2 ]
机构
[1] Siemens AG, Siemens Corp Technol, Munich, Germany
[2] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
关键词
BELIEF-SPACE;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present an integrated, model-based system for state estimation and control in dynamic manipulation tasks with partial observability. We track a belief over the system state using a particle filter from which we extract a Gaussian Mixture Model (GMM). This compressed representation of the belief is used to automatically create a discrete set of goal-directed motion controllers. A reinforcement learning agent then switches between these motion controllers in real-time to accomplish the manipulation task. The proposed system closes the loop from joint sensor feedback to high-frequency, acceleration-limited position commands, thus eliminating the need for pre and post-processing. We evaluate our approach with respect to five distinct manipulation tasks from the domains of active localization, grasping under uncertainty, assembly, and non-prehensile object manipulation. Extensive simulations demonstrate that the hierarchical policy actively exploits the uncertainty information encoded in the compressed belief. Finally, we validate the proposed method on a real -world robot.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Efficient Sim-to-real Transfer of Contact-Rich Manipulation Skills with Online Admittance Residual Learning
    Zhang, Xiang
    Wang, Changhao
    Sun, Lingfeng
    Wu, Zheng
    Zhu, Xinghao
    Tomizuka, Masayoshi
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [42] Indirect Influence Manipulation with Partial Observability
    Archbold, James
    Griffiths, Nathan
    MULTI-AGENT-BASED SIMULATION XIX, 2019, 11463 : 32 - 44
  • [43] Sampling-based Contact-rich Motion Control
    Liu, Libin
    Yin, KangKang
    van de Panne, Michiel
    Shao, Tianjia
    Xu, Weiwei
    ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (04):
  • [44] Rapid Stability Margin Estimation for Contact-Rich Locomotion
    Orsolino, Romeo
    Gangapurwala, Siddhant
    Melon, Oliwier
    Geisert, Mathieu
    Havoutis, Ioannis
    Fallon, Maurice
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 8485 - 8492
  • [45] Policy Blending and Recombination for Multimodal Contact-Rich Tasks
    Narita, Tetsuya
    Kroemer, Oliver
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 2721 - 2728
  • [46] A Simple Learning Algorithm for Contact-Rich Robotic Grasping
    Przybylski, M.
    Klimaszewski, J.
    Wildner, K.
    ACTA PHYSICA POLONICA A, 2024, 146 (04) : 497 - 502
  • [47] A Realistic Surgical Simulator for Non-Rigid and Contact-Rich Manipulation in Surgeries with the da Vinci Research Kit
    Ou, Yafei
    Zargarzadeh, Sadra
    Sedighi, Paniz
    Tavakoli, Mandi
    2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 64 - 70
  • [48] Variable-Impedance and Force Control for Robust Learning of Contact-rich Manipulation Tasks from User Demonstration
    Enayati, Nima
    Mariani, Stefano
    Wahrburg, Arne
    Zanchettin, Andrea M.
    IFAC PAPERSONLINE, 2020, 53 (02): : 9834 - 9840
  • [49] Chance-Constrained Optimization in Contact-rich Systems
    Shirai, Yuki
    Jha, Devesh K.
    Raghunathan, Arvind U.
    Romeres, Diego
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 14 - 21
  • [50] PRECISION: Precomputing Environment Semantics for Contact-Rich Character Animation
    Kapadia, Mubbasir
    Xu Xianghao
    Nitti, Maurizio
    Kallmann, Marcelo
    Coros, Stelian
    Sumner, Robert W.
    Gross, Markus
    PROCEEDINGS I3D 2016: 20TH ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2016, : 29 - 37