Controlling Contact-Rich Manipulation Under Partial Observability

被引:0
|
作者
Wirnshofer, Florian [1 ]
Schmitt, Philipp S. [1 ]
Wichert, Georg, V [1 ]
Burgard, Wolfram [2 ]
机构
[1] Siemens AG, Siemens Corp Technol, Munich, Germany
[2] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
关键词
BELIEF-SPACE;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present an integrated, model-based system for state estimation and control in dynamic manipulation tasks with partial observability. We track a belief over the system state using a particle filter from which we extract a Gaussian Mixture Model (GMM). This compressed representation of the belief is used to automatically create a discrete set of goal-directed motion controllers. A reinforcement learning agent then switches between these motion controllers in real-time to accomplish the manipulation task. The proposed system closes the loop from joint sensor feedback to high-frequency, acceleration-limited position commands, thus eliminating the need for pre and post-processing. We evaluate our approach with respect to five distinct manipulation tasks from the domains of active localization, grasping under uncertainty, assembly, and non-prehensile object manipulation. Extensive simulations demonstrate that the hierarchical policy actively exploits the uncertainty information encoded in the compressed belief. Finally, we validate the proposed method on a real -world robot.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] State Estimation in Contact-Rich Manipulation
    Wirnshofer, Florian
    Schmidt, Philipp S.
    Meister, Philine
    von Wichert, Georg
    Burgard, Wolfram
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 3790 - 3796
  • [2] Variable Impedance Skill Learning for Contact-Rich Manipulation
    Yang, Quantao
    Durr, Alexander
    Topp, Elin Anna
    Stork, Johannes A.
    Stoyanov, Todor
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 8391 - 8398
  • [3] Safe Data-Driven Contact-Rich Manipulation
    Mitsioni, Ioanna
    Tajvar, Pomia
    Kragic, Danica
    Tumova, Jana
    Pek, Christian
    PROCEEDINGS OF THE 2020 IEEE-RAS 20TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS 2020), 2021, : 120 - 127
  • [4] Interpretability in Contact-Rich Manipulation via Kinodynamic Images
    Mitsioni, Ioanna
    Manttari, Joonatan
    Karayiannidis, Yiannis
    Folkesson, John
    Kragic, Danica
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10175 - 10181
  • [5] Learning Dense Rewards for Contact-Rich Manipulation Tasks
    Wu, Zheng
    Lian, Wenzhao
    Unhelkar, Vaibhav
    Tomizuka, Masayoshi
    Schaal, Stefan
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6214 - 6221
  • [6] RMPs for Safe Impedance Control in Contact-Rich Manipulation
    Shaw, Seiji
    Abbatematteo, Ben
    Konidaris, George
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2707 - 2713
  • [7] FORGE: Force-Guided Exploration for Robust Contact-Rich Manipulation Under Uncertainty
    Noseworthy, Michael
    Tang, Bingjie
    Wen, Bowen
    Handa, Ankur
    Kessens, Chad
    Roy, Nicholas
    Fox, Dieter
    Ramos, Fabio
    Narang, Yashraj
    Akinola, Iretiayo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4436 - 4443
  • [8] A System for Imitation Learning of Contact-Rich Bimanual Manipulation Policies
    Stepputtis, Simon
    Bandari, Maryam
    Schaal, Stefan
    Ben Amor, Heni
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 11810 - 11817
  • [9] Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty
    Ranjbar, Alireza
    Vien, Ngo Anh
    Ziesche, Hanna
    Boedecker, Joschka
    Neumann, Gerhard
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2383 - 2390
  • [10] Stability-Guaranteed Reinforcement Learning for Contact-Rich Manipulation
    Khader, Shahbaz Abdul
    Yin, Hang
    Falco, Pietro
    Kragic, Danica
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (01) : 1 - 8