Mixed Connectivity of Random Graphs

被引:3
作者
Gu, Ran [1 ]
Shi, Yongtang [2 ,3 ]
Fan, Neng [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA
来源
COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT I | 2017年 / 10627卷
基金
中国国家自然科学基金;
关键词
Connectivity; Edge-connectivity; Random graph; Threshold function; Hitting time;
D O I
10.1007/978-3-319-71150-8_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For positive integers k and lambda, a graph G is (k, lambda)-connected if it satisfies the following two conditions: (1) vertical bar V (G)vertical bar >= k+ 1, and (2) for any subset S subset of V (G) and any subset L subset of E(G) with lambda vertical bar S vertical bar + vertical bar L vertical bar < k lambda, G - (S boolean OR L) is connected. For positive integers k and l, a graph G with vertical bar V (G)vertical bar >= k + l + 1 is said to be (k, l)-mixed-connected if for any subset S subset of V (G) and any subset L subset of E(G) with vertical bar S vertical bar <= k, vertical bar L vertical bar <= l and vertical bar S vertical bar+vertical bar L vertical bar < k+l, G-(S boolean OR L) is connected. In this paper, we investigate the (k, lambda)-connectivity and (k, l)-mixed-connectivity of random graphs, and generalize the results of Erdos and Renyi (1959), and Stepanov (1970). Furthermore, our argument can show that in the random graph process G = (G(t))(0)(N), N = [GRAPHICS] , the hitting times of minimum degree at least k lambda and of G(t) being (k, lambda)-connected coincide with high probability, and also the hitting times of minimum degree at least k + l and of G(t) being (k, l)-mixed-connected coincide with high probability. These results are analogous to the work of Bollobas and Thomassen (1986) on classic connectivity.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1961, Acta Mathematica Scientia Hungary, DOI DOI 10.1007/BF02066689
[2]  
[Anonymous], 2001, Cambridge studies in advanced mathematics, DOI DOI 10.1017/CBO9780511814068
[3]   CONNECTIVITY FUNCTION OF A GRAPH [J].
BEINEKE, LW ;
HARARY, F .
MATHEMATIKA, 1967, 14 (28P2) :197-&
[4]   GENERALIZATION OF LINE CONNECTIVITY AND OPTIMALLY INVULNERABLE GRAPHS [J].
BOESCH, FT ;
CHEN, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (04) :657-665
[5]  
Bollob B., 1986, ANN DISCRETE MATH, V7, P35
[6]   THRESHOLD FUNCTIONS [J].
BOLLOBAS, B ;
THOMASON, A .
COMBINATORICA, 1987, 7 (01) :35-38
[7]   A MIXED VERSION OF MENGER THEOREM [J].
EGAWA, Y ;
KANEKO, A ;
MATSUMOTO, M .
COMBINATORICA, 1991, 11 (01) :71-74
[8]  
Erds P., 1959, Publ. math. debrecen, V6, P290, DOI 10.5486/PMD.1959.6.3-4.12
[9]   Every monotone graph property has a sharp threshold [J].
Friedgut, E ;
Kalai, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (10) :2993-3002
[10]   Minimally (k, k)-edge-connected graphs [J].
Hennayake, K ;
Lai, HJ ;
Li, DY ;
Ma, JZ .
JOURNAL OF GRAPH THEORY, 2003, 44 (02) :116-131