Unsupervised Cross-Dataset Transfer Learning for Person Re-identification

被引:282
作者
Peng, Peixi [1 ,5 ]
Xiang, Tao [2 ]
Wang, Yaowei [3 ]
Pontil, Massimiliano [4 ]
Gong, Shaogang [2 ]
Huang, Tiejun [1 ]
Tian, Yonghong [1 ,5 ]
机构
[1] Peking Univ, Natl Engn Lab Video Technol, Beijing, Peoples R China
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
[3] Beijing Inst Technol, Dept Elect Engn, Beijing, Peoples R China
[4] Italian Inst Technol, Genoa, Italy
[5] Cooperat Medianet Innovat Ctr, Beijing, Peoples R China
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
基金
中国国家自然科学基金;
关键词
DOMAIN ADAPTATION;
D O I
10.1109/CVPR.2016.146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing person re-identification (Re-ID) approaches follow a supervised learning framework, in which a large number of labelled matching pairs are required for training. This severely limits their scalability in real-world applications. To overcome this limitation, we develop a novel cross-dataset transfer learning approach to learn a discriminative representation. It is unsupervised in the sense that the target dataset is completely unlabelled. Specifically, we present an multi-task dictionary learning method which is able to learn a dataset-shared but target-data-biased representation. Experimental results on five benchmark datasets demonstrate that the method significantly outperforms the state-of-the-art.
引用
收藏
页码:1306 / 1315
页数:10
相关论文
共 44 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2015, PROC CVPR IEEE, DOI 10.1109/CVPR.2015.7299016
[3]  
[Anonymous], 2013, COMPUTER VISION ACCV, DOI 10.1007/978-3-642-37331-23
[4]  
[Anonymous], 2014, BRIT MACH VIS C
[5]  
[Anonymous], 2004, SIGKDD
[6]  
[Anonymous], 2007, INT WORKSH PERF EV T
[7]  
[Anonymous], 2013, P 4 ACM IEEE INT WOR
[8]   Custom Pictorial Structures for Re-identification [J].
Cheng, Dong Seon ;
Cristani, Marco ;
Stoppa, Michele ;
Bazzani, Loris ;
Murino, Vittorio .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[9]  
Dikmen M, 2011, LECT NOTES COMPUT SC, V6495, P501, DOI 10.1007/978-3-642-19282-1_40
[10]   Person Re-Identification by Symmetry-Driven Accumulation of Local Features [J].
Farenzena, M. ;
Bazzani, L. ;
Perina, A. ;
Murino, V. ;
Cristani, M. .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :2360-2367