New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals

被引:45
|
作者
Butt, Saad Ihsan [1 ]
Umar, Muhammad [1 ]
Rashid, Saima [2 ]
Akdemir, Ahmet Ocak [3 ]
Chu, Yu-Ming [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore, Pakistan
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] AgriIbrahim Cecen Univ, Fac Sci & Letters, Dept Math, Agri, Turkey
[4] Huzhou Univ, Dept Math, Huzhou, Peoples R China
[5] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Jensen inequality; Jensen-Mercer inequality; New conformable k-fractional integrals; 26E60; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS; BOUNDS; REFINEMENTS; CALCULUS; SOLITONS; VARIANT;
D O I
10.1186/s13662-020-03093-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish serval novel Hermite-Jensen-Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals by use of our new approaches. Our obtained results are the generalizations, improvements, and extensions of some previously known results, and our ideas and methods may lead to a lot of follow-up research.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR k-β-CONVEX FUNCTIONS VIA GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRAL OPERATORS
    Lakhal, Fahim
    Badreddine, Meftah
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (03): : 559 - 584
  • [42] Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization
    Wu, Shanhe
    Khan, Muhammad Adil
    Faisal, Shah
    Saeed, Tareq
    Nwaeze, Eze R.
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [43] Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals
    Budak, Huseyin
    Ertugral, Fatma
    Pehlivan, Ebru
    FILOMAT, 2019, 33 (15) : 4967 - 4979
  • [44] Examining the Hermite-Hadamard Inequalities for k-Fractional Operators Using the Green Function
    Yildiz, Cetin
    Cotirla, Luminita-Ioana
    FRACTAL AND FRACTIONAL, 2023, 7 (02)
  • [45] On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function
    Jleli, Mohamed
    Samet, Bessem
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1252 - 1260
  • [46] New Estimates on Hermite-Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications
    Kashuri, Artion
    Almalki, Yahya
    Mahnashi, Ali M.
    Sahoo, Soubhagya Kumar
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [47] New fractional estimates for Hermite-Hadamard-Mercer's type inequalities
    Chu, Hong-Hu
    Rashid, Saima
    Hammou, Zakia
    Chu, Yu-Ming
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3079 - 3089
  • [48] On Hermite-Hadamard type inequalities via generalized fractional integrals
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (06) : 1221 - 1230
  • [49] Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals
    Zhou, Ziyi
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [50] Some new generalized κ-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications
    Vivas-Cortez, Miguel
    Awan, Muhammad Uzair
    Javed, Muhammad Zakria
    Kashuri, Artion
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    AIMS MATHEMATICS, 2021, 7 (02): : 3203 - 3220