New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals

被引:45
|
作者
Butt, Saad Ihsan [1 ]
Umar, Muhammad [1 ]
Rashid, Saima [2 ]
Akdemir, Ahmet Ocak [3 ]
Chu, Yu-Ming [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore, Pakistan
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] AgriIbrahim Cecen Univ, Fac Sci & Letters, Dept Math, Agri, Turkey
[4] Huzhou Univ, Dept Math, Huzhou, Peoples R China
[5] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Jensen inequality; Jensen-Mercer inequality; New conformable k-fractional integrals; 26E60; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS; BOUNDS; REFINEMENTS; CALCULUS; SOLITONS; VARIANT;
D O I
10.1186/s13662-020-03093-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish serval novel Hermite-Jensen-Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals by use of our new approaches. Our obtained results are the generalizations, improvements, and extensions of some previously known results, and our ideas and methods may lead to a lot of follow-up research.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Generalized k-fractional conformable integrals and related inequalities
    Qi, Feng
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    AIMS MATHEMATICS, 2019, 4 (03): : 343 - 358
  • [32] New estimates on generalized Hermite-Hadamard-Mercer-type inequalities
    Yildiz, Cetin
    Erden, Samet
    Kermausuor, Seth
    Breaz, Daniel
    Cotirla, Luminita-Ioana
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [33] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [34] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [35] Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals
    Zhang, Yao
    Du, Ting-Song
    Wang, Hao
    Shen, Yan-Jun
    Kashuri, Artion
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [36] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [37] INEQUALITIES OF JENSEN'S TYPE FOR GENERALIZED k-g-FRACTIONAL INTEGRALS
    Dragomir, Silvestru Sever
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (03): : 257 - 276
  • [38] Improvement in Some Inequalities via Jensen-Mercer Inequality and Fractional Extended Riemann-Liouville Integrals
    Hyder, Abd-Allah
    Almoneef, Areej A.
    Budak, Huseyin
    AXIOMS, 2023, 12 (09)
  • [39] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR MULTIPLICATIVE FRACTIONAL INTEGRALS
    Budak, H.
    Ozcelik, K.
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 91 - 99
  • [40] Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications
    Bin-Mohsin, Bandar
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Mihai, Marcela, V
    Budak, Huseyin
    Khan, Awais Gul
    Noor, Muhammad Aslam
    SYMMETRY-BASEL, 2022, 14 (10):