New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals

被引:45
|
作者
Butt, Saad Ihsan [1 ]
Umar, Muhammad [1 ]
Rashid, Saima [2 ]
Akdemir, Ahmet Ocak [3 ]
Chu, Yu-Ming [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore, Pakistan
[2] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[3] AgriIbrahim Cecen Univ, Fac Sci & Letters, Dept Math, Agri, Turkey
[4] Huzhou Univ, Dept Math, Huzhou, Peoples R China
[5] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex functions; Hermite-Hadamard inequality; Jensen inequality; Jensen-Mercer inequality; New conformable k-fractional integrals; 26E60; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS; BOUNDS; REFINEMENTS; CALCULUS; SOLITONS; VARIANT;
D O I
10.1186/s13662-020-03093-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish serval novel Hermite-Jensen-Mercer-type inequalities for convex functions in the framework of the k-fractional conformable integrals by use of our new approaches. Our obtained results are the generalizations, improvements, and extensions of some previously known results, and our ideas and methods may lead to a lot of follow-up research.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Hermite-Hadamard type inequalities via k-fractional integrals concerning differentiable generalized η-convex mappings
    Kashuri, Artion
    Liko, Rozana
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (01): : 19 - 35
  • [22] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [23] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [24] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386
  • [25] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [26] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [27] Ostrowski type inequalities via new fractional conformable integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Gozpinar, Abdurrahman
    Jarad, Fahd
    AIMS MATHEMATICS, 2019, 4 (06): : 1684 - 1697
  • [28] Hermite-Hadamard type inequalities for the generalized k-fractional integral operators
    Set, Erhan
    Choi, Junesang
    Gozpinar, Abdurrahman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [29] Derivation of conticrete Hermite-Hadamard-Jensen-Mercer inequalities through k-Caputo fractional derivatives and majorization
    Khan, Muhammad Adil
    Faisal, Shah
    FILOMAT, 2024, 38 (10) : 3389 - 3413
  • [30] Generalized Hermite-Hadamard-Mercer Type Inequalities via Majorization
    Faisal, Shah
    Khan, Muhammad Adil
    Iqbal, Sajid
    FILOMAT, 2022, 36 (02) : 469 - 483