Simulation and Quasi-Linear Theory of Whistler Anisotropy Instability

被引:13
|
作者
Lee, Sang-Yun [1 ]
Lee, Ensang [1 ]
Seough, Jungjoon [2 ]
Lee, Jung-gi [2 ]
Hwang, Junga [2 ,3 ]
Lee, Jae-Jin [2 ]
Cho, Kyung-Suk [2 ,3 ]
Yoon, Peter H. [1 ,2 ,4 ]
机构
[1] Kyung Hee Univ, Sch Space Res, Yongin, South Korea
[2] Korea Astron & Space Sci Inst, Daejeon, South Korea
[3] Univ Sci & Technol, Dept Astron & Space Sci, Daejeon, South Korea
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
PLASMA-WAVE OBSERVATIONS; ALLEN RADIATION BELTS; ELECTRON ACCELERATION; GEOTAIL OBSERVATIONS; MODE WAVES; LION ROARS; CHORUS; MAGNETOSHEATH; DIFFUSION;
D O I
10.1029/2017JA024960
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The whistler anisotropy (or electromagnetic electron cyclotron) instability may be operative in many geomagnetic and heliospherical environments, including the radiation belt, solar wind, and the solar corona. The present investigation carries out a comparative analysis between the two-dimensional particle-in-cell simulation of weakly growing whistler anisotropy instability and the velocity moment-based two-dimensional quasi-linear theory under the assumption of bi-Maxwellian electron distribution function. It is shown that the simplified quasi-linear theory provides a qualitative agreement with the more rigorous particle-in-cell simulation, but some discrepancies are also found. Possible causes for the differences in either method are discussed, and future improvements on the theory are suggested. Potential applicability of the present finding in the context of the space and astrophysics is discussed.
引用
收藏
页码:3277 / 3290
页数:14
相关论文
共 50 条
  • [21] Quasi-linear diffusion coefficients for highly oblique whistler mode waves
    Albert, J. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (05) : 5339 - 5354
  • [22] Quasi-linear theory of anomalous resistivity
    Yoon, PH
    Lui, ATY
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A2)
  • [23] QUASI-LINEAR GEOSTATISTICAL THEORY FOR INVERSING
    KITANIDIS, PK
    WATER RESOURCES RESEARCH, 1995, 31 (10) : 2411 - 2419
  • [24] QUASI-LINEAR THEORY OF PLASMA OSCILLATIONS
    VEDENOV, AA
    VELIKHOV, EP
    SAGDEEV, RZ
    NUCLEAR FUSION, 1962, : 465 - 475
  • [25] QUASI-LINEAR THEORY OF THERMONUCLEAR ALFVEN LOSS-CONE INSTABILITY IN A MIRROR REACTOR
    MIZUNO, N
    SATO, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (12) : 4241 - 4252
  • [26] Electron contribution in mirror instability in quasi-linear regime
    Noreen, N.
    Yoon, P. H.
    Lopez, R. A.
    Zaheer, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (07) : 6978 - 6990
  • [27] Quasi-linear Analysis of Proton-cyclotron Instability
    Yoon, Peter H.
    Lopez, Rodrigo A.
    Seough, Jungjoon
    Rashid, Muhammad
    Salem, Chadi S.
    Sarfraz, Muhammad
    Lazar, Marian
    Shaaban, Shaaban M.
    ASTROPHYSICAL JOURNAL, 2024, 976 (02):
  • [28] ELECTROMAGNETIC HOT ION-BEAM INSTABILITIES - QUASI-LINEAR THEORY AND SIMULATION
    ROGERS, B
    GARY, SP
    WINSKE, D
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1985, 90 (NA10): : 9494 - 9502
  • [29] QUASI-LINEAR EVOLUTION OF THE SELF-FILAMENTATION INSTABILITY
    HASSAM, AB
    PHYSICS OF FLUIDS, 1986, 29 (12) : 4103 - 4111
  • [30] Hybrid Simulation and Quasi-linear Theory of Bi-Kappa Proton Instabilities
    Lopez, R. A.
    Yoon, P. H.
    Vinas, A. F.
    Lazar, M.
    ASTROPHYSICAL JOURNAL, 2023, 954 (02):