Forster Resonance Energy Transfer between Fluorescent Organic Semiconductors: Poly(9,9-dioctylfluorene-alt-benzothiadiazole) and 6,13-Bis(triisopropylsilylethynyl)pentacene

被引:5
|
作者
Bisht, Hemlata [1 ]
Singh, Abhinav Pratap [2 ]
Joshi, Hem Chandra [3 ]
Jit, Satyabrata [2 ]
Mishra, Hirdyesh [1 ]
机构
[1] Banaras Hindu Univ, Dept Phys, Phys Sect MMV, Varanasi 221005, Uttar Pradesh, India
[2] BHU, Dept Elect Engn, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
[3] Inst Plasma Res Gandhinagar, Laser Diagnost Div, Ahmadabad 382428, India
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2022年 / 126卷 / 21期
关键词
PHOTOPHYSICAL PROPERTIES; LIGHT; DIFFUSION; MIGRATION; MORPHOLOGY; EFFICIENT; MOLECULE; BLENDS; DECAY;
D O I
10.1021/acs.jpcb.2c00678
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, an investigation of the electronic excitation energy transfer between two p-type fluorescent semiconductors, F8BT [poly(9,9-dioctylfluorene- alcohol- benzothiadiazole] and TIPS-P [6,13- bis-(triisopropylsilylethynyl)pentacene], has been carried out in a chloroform solution using steady-state and time-domain fluorescence techniques. The spectral overlap integral between donor (F8BT) emission and acceptor (TIPS-P) absorption is 2.04 x 10(15) nm(4)/(M cm), and the corresponding critical transfer distance is 53.12 angstrom. In donor decay dynamics, at the lower acceptor concentrations, the observed results deviate from the Forster theory due to the combined effect of diffusion and energy migration. However, it does not exhibit energy migration and distribution for higher acceptor concentrations, and the system follows the Forster model of resonance excitation energy transfer (FRET). The higher value of the donor-acceptor interaction strength than self-interaction (donor-donor interaction) appears to be responsible for this behavior. Further, in acceptor decay, the appearance of the rise time and its decrease with the acceptor concentration confirms FRET from F8BT to TIPS-P.
引用
收藏
页码:3931 / 3939
页数:9
相关论文
共 11 条
  • [1] Interfacial structure in conjugated polymers:: Characterization and control of the interface between poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-alt-benzothiadiazole)
    Higgins, Anthony M.
    Martin, Simon J.
    Geoghegan, Mark
    Heriot, Sasha Y.
    Thompson, Richard L.
    Cubitt, Robert
    Dalgliesh, Robert M.
    Grizzi, Ilaria
    Jones, Richard A. L.
    MACROMOLECULES, 2006, 39 (19) : 6699 - 6707
  • [2] Effects of Blended Poly(3-hexylthiophene) and 6,13-bis(triisopropylsilylethynyl) pentacene Organic Semiconductors on the Photoresponse Characteristics of Thin-Film Transistors
    Shin, Hyunji
    Lee, Hyeonju
    Kim, Bokyung
    Zhang, Xue
    Bae, Jin-Hyuk
    Park, Jaehoon
    KOREAN JOURNAL OF METALS AND MATERIALS, 2022, 60 (03): : 198 - 205
  • [3] Organic Thin Film Transistor with Poly(4-vinylbiphenyl) Blended 6,13-Bis(triisopropylsilylethynyl)pentacene on Propyleneglycolmonomethyletheracetate Dielectric Surface
    Kwon, Jae-Hong
    Shin, Sang-Il
    Choi, Jinnil
    Chung, Myung-Ho
    Oh, Tae-Yeon
    Kim, Kyung-Hwan
    Choi, Dong Hoon
    Ju, Byeong-Kwon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (05) : 3198 - 3202
  • [4] Effect of Diffusion on Photo-Induced Excited-State Energy Transfer between Fluorescent Semiconducting Molecules: Tris-(8-hydroxyquinoline) Aluminum and 6,13-Bis (Triisopropylsilylethynyl) Pentacene
    Bisht, Hemlata
    Singh, Abhinav Pratap
    Jit, Satyabrata
    Pokharia, Sandeep
    Mishra, Hirdyesh
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (42): : 23011 - 23020
  • [5] 6,13-Bis(triisopropylsilylethynyl) Pentacene Organic Field-Effect Transistors Utilizing Poly(p-silsesquioxane) Insulating Layers with Various Ratios of Phenol Groups
    Nakanishi, Yuta
    Kajii, Hirotake
    Tamura, Koki
    Ohmori, Yutaka
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (04)
  • [6] Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors
    Onojima, Norio
    Hara, Kazuhiro
    Nakamura, Ayato
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (05)
  • [7] 6,13-bis(triisopropylsilylethynyl) pentacene organic field-effect transistors utilizing poly(p-silsesquioxane) insulating layers with various ratios of phenol groups
    Nakanishi, Yuta
    Kajii, Hirotake
    Tamura, Koki
    Ohmori, Yutaka
    Japanese Journal of Applied Physics, 2012, 51 (4 PART 2)
  • [8] Competition between Singlet Fission and Charge Separation in Solution-Processed Blend Films of 6,13-Bis(triisopropylsilylethynyl)pentacene with Sterically-Encumbered Perylene-3,4:9,10-bis(dicarboximide)s
    Ramanan, Charusheela
    Smeigh, Amanda L.
    Anthony, John E.
    Marks, Tobin J.
    Wasielewski, Michael R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 386 - 397
  • [9] Mechanical Deformation Effects on Flexible Thin Film Transistors: A Comparison Between 6,13-Bis(Triisopropylsilylethynyl)Pentacene and N,N′-Bis-(2-Ethylhexyl)-1,7-Dicyanoperylene-3,4:9,10-bis(Dicarboximide) Derivatives
    Mascia, A.
    Concas, M.
    Podda, E.
    Casula, G.
    Lai, S.
    Cosseddu, P.
    ADVANCED MATERIALS INTERFACES, 2024,
  • [10] Interplay between Amplified Spontaneous Emission, Forster Resonant Energy Transfer, and Self-Absorption in Hybrid Poly(9,9-dioctylfluorene)-CdSe/ZnS Nanocrystal Thin Films
    Anni, M.
    Alemanno, E.
    Creti, A.
    Ingrosso, C.
    Panniello, A.
    Striccoli, M.
    Curri, M. L.
    Lomascolo, M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (05): : 2086 - 2090