New Approaches to Parameter Estimation from Noisy Image Data

被引:0
|
作者
Whitaker, Meredith Kathryn [1 ]
Clarkson, Eric [1 ]
Barrett, Harrison H. [1 ]
机构
[1] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
Estimation; SPECT; assessment of image quality;
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In a pure estimation task, a signal is known to be present, and we wish to determine numerical values for parameters that describe it. We compared the performance of the classical Wiener estimator and a new scanning-linear estimator for the task of estimating signal location, signal volume, and signal amplitude from noisy image data. Both procedures incorporate prior knowledge of the data's statistical fluctuations and minimize a given metric of error. First we explore the classical Wiener estimator, which operates linearly on the data and minimizes the ensemble mean-squared error among linear methods. The signal is embedded in a random background to simulate the effect of nuisance parameters. The results of our performance tests indicate the Wiener estimator is fundamentally unable to locate a signal, regardless of the quality of the image, when the background is random. Even when the simulated relationship between the object and image was reduced to noisy samples of planar objects, linear operations on the data failed to locate the signal. Given these new results on the fundamental limitations of Wiener estimation, we extend our methods to include more complex data processing. We introduce and evaluate a scanning-linear estimator that performs impressively. The scanning action of the estimator refers to seeking a solution that maximizes a linear metric, thereby requiring a global-extremum search. The linear metric to be optimized can be derived as a special case of maximum a posteriori (MAP) estimation when the likelihood is Gaussian and a slowly-varying covariance approximation is made.
引用
收藏
页码:3602 / 3604
页数:3
相关论文
共 50 条
  • [1] Autoregressive parameter estimation from noisy data
    Zheng, WX
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (01): : 71 - 75
  • [2] A New Approach for Transmission Line Parameter Estimation from Noisy PMU Data
    de Albuquerque, Felipe P.
    Marques Costa, Eduardo C.
    Liboni, Luisa H. B.
    Ribeiro Pereira, Ronaldo F.
    de Oliveira, Mauricio C.
    2021 14TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2021, : 196 - 202
  • [3] Estimation of the Hurst parameter from continuous noisy data
    Chigansky, Pavel
    Kleptsyna, Marina
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2343 - 2385
  • [4] Estimation of the Hurst parameter from discrete noisy data
    Gloter, Arnaud
    Hoffmann, Marc
    ANNALS OF STATISTICS, 2007, 35 (05): : 1947 - 1974
  • [5] NONUNIFORM IMAGE MOTION ESTIMATION FROM NOISY DATA
    NAMAZI, NM
    LEE, CH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (02): : 364 - 366
  • [6] ISING FIELD PARAMETER ESTIMATION FROM INCOMPLETE AND NOISY DATA
    Giovannelli, J. -F.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1853 - 1856
  • [7] Parameter estimation from noisy measurements
    Vajk, Istvan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (04) : 437 - 447
  • [8] Parameter estimation in nonlinear delayed feedback systems from noisy data
    Horbelt, W
    Timmer, J
    Voss, HU
    PHYSICS LETTERS A, 2002, 299 (5-6) : 513 - 521
  • [9] A new look at parameter estimation of autoregressive signals from noisy observations
    Zheng, Wei Ying
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3778 - 3781
  • [10] Enhanced parameter estimation methods for noisy SPECT data
    Wen, Lingfeng
    Eberl, Stefan
    Choi, Hon-Chit
    Feng, David Dagan
    Fulham, Michael
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2008, 89 (02) : 102 - 111