Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis

被引:55
作者
Basile, Arianna [1 ]
Campanaro, Stefano [1 ,2 ]
Kovalovszki, Adam [3 ]
Zampieri, Guido [1 ,4 ]
Rossi, Alessandro [1 ]
Angelidaki, Irini [3 ]
Valle, Giorgio [1 ]
Treu, Laura [1 ]
机构
[1] Univ Padua, Dept Biol, Via U Bassi 58-B, I-35121 Padua, Italy
[2] Univ Padua, CRIBI Biotechnol Ctr, I-35131 Padua, Italy
[3] Tech Univ Denmark, Dept Environm Engn, DK-2800 Lyngby, Denmark
[4] Teesside Univ, Dept Comp Sci & Informat Syst, Middlesbrough, Cleveland, England
关键词
Anaerobic digestion/flux balance analysis/genone-scale metabolic mode microbial interactions/renewable energy; VOLATILE FATTY-ACIDS; WASTE-WATER; BACTERIA; IDENTIFICATION; COMMUNITIES; GENE;
D O I
10.1016/j.ymben.2020.08.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Anaerobic digestion is a key biological process for renewable energy, yet the mechanistic knowledge on its hidden microbial dynamics is still limited. The present work charted the interaction network in the anaerobic digestion microbiome via the full characterization of pairwise interactions and the associated metabolite exchanges. To this goal, a novel collection of 836 genome-scale metabolic models was built to represent the functional capabilities of bacteria and archaea species derived from genome-centric metagenomics. Dominant microbes were shown to prefer mutualistic, parasitic and commensalistic interactions over neutralism, amensalism and competition, and are more likely to behave as metabolite importers and profiteers of the coexistence. Additionally, external hydrogen injection positively influences microbiome dynamics by promoting commensalism over amensalism. Finally, exchanges of glucogenic amino acids were shown to overcome auxotrophies caused by an incomplete tricarboxylic acid cycle. Our novel strategy predicted the most favourable growth conditions for the microbes, overall suggesting strategies to increasing the biogas production efficiency. In principle, this approach could also be applied to microbial populations of biomedical importance, such as the gut microbiome, to allow a broad inspection of the microbial interplays.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 78 条
[41]   Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models [J].
Lewis, Nathan E. ;
Hixson, Kim K. ;
Conrad, Tom M. ;
Lerman, Joshua A. ;
Charusanti, Pep ;
Polpitiya, Ashoka D. ;
Adkins, Joshua N. ;
Schramm, Gunnar ;
Purvine, Samuel O. ;
Lopez-Ferrer, Daniel ;
Weitz, Karl K. ;
Eils, Roland ;
Koenig, Rainer ;
Smith, Richard D. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[42]   Fuelling the future: microbial engineering for the production of sustainable biofuels [J].
Liao, James C. ;
Mi, Luo ;
Pontrelli, Sammy ;
Luo, Shanshan .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (05) :288-304
[43]   Anaerobic Digestion [J].
Liebetrau, Jan ;
Straeuber, Heike ;
Kretzschmar, Joerg ;
Denysenko, Velina ;
Nelles, Michael .
BIOREFINERIES, 2019, 166 :281-299
[44]   MEMOTE for standardized genome-scale metabolic model testing [J].
Lieven, Christian ;
Beber, Moritz E. ;
Olivier, Brett G. ;
Bergmann, Frank T. ;
Ataman, Meric ;
Babaei, Parizad ;
Bartell, Jennifer A. ;
Blank, Lars M. ;
Chauhan, Siddharth ;
Correia, Kevin ;
Diener, Christian ;
Draeger, Andreas ;
Ebert, Birgitta E. ;
Edirisinghe, Janaka N. ;
Faria, Jose P. ;
Feist, Adam M. ;
Fengos, Georgios ;
Fleming, Ronan M. T. ;
Garcia-Jimenez, Beatriz ;
Hatzimanikatis, Vassily ;
van Helvoirt, Wout ;
Henry, Christopher S. ;
Hermjakob, Henning ;
Herrgard, Markus J. ;
Kaafarani, Ali ;
Kim, Hyun Uk ;
King, Zachary ;
Klamt, Steffen ;
Klipp, Edda ;
Koehorst, Jasper J. ;
Koenig, Matthias ;
Lakshmanan, Meiyappan ;
Lee, Dong-Yup ;
Lee, Sang Yup ;
Lee, Sunjae ;
Lewis, Nathan E. ;
Liu, Filipe ;
Ma, Hongwu ;
Machado, Daniel ;
Mahadevan, Radhakrishnan ;
Maia, Paulo ;
Mardinoglu, Adil ;
Medlock, Gregory L. ;
Monk, Jonathan M. ;
Nielsen, Jens ;
Nielsen, Lars Keld ;
Nogales, Juan ;
Nookaew, Intawat ;
Palsson, Bernhard O. ;
Papin, Jason A. .
NATURE BIOTECHNOLOGY, 2020, 38 (03) :272-276
[45]  
Machado D., 2020, BIORXIV, DOI [10.1101/2020.01.28.922583, DOI 10.1101/2020.01.28.922583,202001.28.922583]
[46]   Fast automated reconstruction of genome-scale metabolic models for microbial species and communities [J].
Machado, Daniel ;
Andrejev, Sergej ;
Tramontano, Melanie ;
Patil, Kiran Raosaheb .
NUCLEIC ACIDS RESEARCH, 2018, 46 (15) :7542-7553
[47]   Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota [J].
Magnusdottir, Stefania ;
Heinken, Almut ;
Kutt, Laura ;
Ravcheev, Dmitry A. ;
Bauer, Eugen ;
Noronha, Alberto ;
Greenhalgh, Kacy ;
Jager, Christian ;
Baginska, Joanna ;
Wilmes, Paul ;
Fleming, Ronan M. T. ;
Thiele, Ines .
NATURE BIOTECHNOLOGY, 2017, 35 (01) :81-89
[48]   Beyond the Black Queen Hypothesis [J].
Mas, Alix ;
Jamshidi, Shahrad ;
Lagadeuc, Yvan ;
Eveillard, Damien ;
Vandenkoornhuyse, Philippe .
ISME JOURNAL, 2016, 10 (09) :2085-2091
[49]   Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment [J].
Maus, Irena ;
Gabriela Cibis, Katharina ;
Bremges, Andreas ;
Stolze, Yvonne ;
Wibberg, Daniel ;
Tomazetto, Geizecler ;
Blom, Jochen ;
Sczyrba, Alexander ;
Koenig, Helmut ;
Puehler, Alfred ;
Schlueter, Andreas .
JOURNAL OF BIOTECHNOLOGY, 2016, 232 :50-60
[50]   MMinte: an application for predicting metabolic interactions among the microbial species in a community [J].
Mendes-Soares, Helena ;
Mundy, Michael ;
Soares, Luis Mendes ;
Chia, Nicholas .
BMC BIOINFORMATICS, 2016, 17