Second-order statistical properties of quantum chaotic beams

被引:1
作者
Bendjaballah, C. [1 ]
Pourmir, M. [2 ]
机构
[1] CNRS, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
[2] Ecole Super Elect, Dept Telecommun, F-91192 Gif Sur Yvette, France
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
关键词
boson systems; chaos; fermion systems;
D O I
10.1103/PhysRevA.79.053826
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the situation in which the field of quantum particles such as photons (bosons) or electrons (fermions) undergoes a significant attenuation during the detection process. We characterize the second-order statistical properties of the field by the bunching for bosons and the antibunching for fermions. Bunching and antibunching effects are derived from the time intervals distributions of the random point process of detection instead of the moments of the number of particles registered in a given time interval. Fields of both beams are supposed to be in chaotic states and have second-order time correlation functions of exponential profile and of arbitrary correlation time. A test is proposed for nonclassical states: the behavior of the antibunching function is a nondecreasing function near the origin of the time axis.
引用
收藏
页数:9
相关论文
共 17 条
[1]   PHOTON COUNTING STATISTICS OF GAUSSIAN LIGHT [J].
BEDARD, G .
PHYSICAL REVIEW, 1966, 151 (04) :1038-&
[2]   DETECTION AND EMISSION PROCESSES OF QUANTUM PARTICLES IN A CHAOTIC-STATE [J].
BENARD, C ;
MACCHI, O .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (02) :155-167
[3]   STATISTICAL PROPERTIES OF INTENSITY-MODULATED COHERENT RADIATION - THEORETICAL AND EXPERIMENTAL ASPECTS [J].
BENDJABA.C ;
PERROT, F .
JOURNAL OF APPLIED PHYSICS, 1973, 44 (11) :5130-5141
[4]   Time-interval distributions of a random point process in the detection of classical and nonclassical states of light [J].
Bendjaballah, C .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (04) :370-375
[5]  
BENDJABALLAH C, 1995, INTRO PHOTON COMMUNI
[6]  
Borodin A., ARXIVMATHRT9804088
[7]   Density operators for fermions [J].
Cahill, KE ;
Glauber, RJ .
PHYSICAL REVIEW A, 1999, 59 (02) :1538-1555
[8]  
Glauber R., 1965, QUANTUM OPTICS ELECT
[9]  
GLAUBER RJ, 1970, QUANTUM OPTICS
[10]   Comparison of the Hanbury Brown-Twiss effect for bosons and fermions [J].
Jeltes, T. ;
McNamara, J. M. ;
Hogervorst, W. ;
Vassen, W. ;
Krachmalnicoff, V. ;
Schellekens, M. ;
Perrin, A. ;
Chang, H. ;
Boiron, D. ;
Aspect, A. ;
Westbrook, C. I. .
NATURE, 2007, 445 (7126) :402-405