A SEMI-SUPERVISED LEARNING APPROACH TO ONLINE AUDIO BACKGROUND DETECTION

被引:9
作者
Chu, Selina [1 ]
Narayanan, Shrikanth [1 ]
Kuo, C-C Jay [1 ]
机构
[1] Univ So Calif, Dept Comp Sci, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
来源
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | 2009年
关键词
Environmental sounds; unstructured audio classification; background modeling; semi-supervised learning;
D O I
10.1109/ICASSP.2009.4959912
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a framework for audio background modeling of complex and unstructured audio environments. The determination of background audio is important for understanding and predicting the ambient context surrounding an agent, both human and machine. Our method extends the online adaptive Gaussian Mixture model technique to model variations in the background audio. We propose a method for learning the initial background model using a semi-supervised learning approach, This information is then integrated into the online background determination process, providing us with a more complete background model. We show that we can utilize both labeled and unlabeled data to improve audio classification performance. By incorporating prediction models in the determination process, we can improve the background detection performance even further. Experimental results on real data sets demonstrate the effectiveness of our proposed method.
引用
收藏
页码:1629 / +
页数:2
相关论文
共 10 条
[1]  
CHU S, 2009, IEEE T AUDI IN PRESS
[2]  
Chu Selina., 2008, P ICASSP
[3]  
ELLIS DPW, 2001, P WORKSH CRAC
[4]  
ELLIS DPW, 2004, P CARPE
[5]  
ERONEN A, 2006, IEEE T AUDIO SPEECH
[6]  
HARMA A, 2005, P ICME
[7]  
HUANG J, 2002, P ICME
[8]   Online audio background determination for complex audio environments [J].
Moncrieff, Simon ;
Venkatesh, Svetha ;
West, Geoff .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2007, 3 (02)
[9]   Text classification from labeled and unlabeled documents using EM [J].
Nigam, K ;
McCallum, AK ;
Thrun, S ;
Mitchell, T .
MACHINE LEARNING, 2000, 39 (2-3) :103-134
[10]  
Stauffer Chris., 1999, P CVPR