Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance

被引:2
作者
Kanbar, Osama Zuhair [1 ,2 ]
Chege, Paul [1 ,2 ]
Lantos, Csaba [2 ]
Kiss, Erzsebet [3 ]
Pauk, Janos [2 ]
机构
[1] Szent Istvan Univ, Doctoral Sch Plant Sci, Pater K U 1, H-2103 Godollo, Hungary
[2] Cereal Res Nonprofit Ltd, Dept Biotechnol, POB 391, H-6701 Szeged, Hungary
[3] Szent Istvan Univ, Genet Microbiol & Biotechnol Inst, Pater K U 1, H-2103 Godollo, Hungary
来源
PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION | 2020年 / 18卷 / 05期
关键词
drought tolerance; grain yield; winter wheat; ROOT SYSTEMS; TRAITS; STRESS; WATER; YIELD; GENOTYPES; STRATEGIES; RESISTANCE; CULTIVARS; INDEXES;
D O I
10.1017/S1479262120000398
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Climate change realities such as high-temperature levels are among the causes of drought episodes affecting the productivity and yield stability of crops worldwide. Breeders, therefore, have a daunting challenge to overcome and a large gap to seal in the agricultural sector arising due to drought through the improvement of new tolerant germplasm. It is in this endeavour that the present study, which included nine winter wheat genotypes grown in the greenhouse, was conducted to evaluate their performance under well-watered and drought stress treatments for the traits: heading time, plant height, above-ground biomass, seed number/plant, grain yield/plant, harvest index, root length and root dry mass. A lower grain yield/plant was observed for each studied genotype under drought stress conditions than for those under well-watered conditions. Additionally, grain yield/plant depression varied from 69.64 to 81.73% depending on the genotype. Positive significant correlations between grain yield/plant and heading time, above-ground biomass, and seed number/plant under the drought stress treatment were obtained. Genotypes that recorded high root dry mass had both high above-ground biomass and seed number/plant under drought stress conditions. Positive correlations between grain yield/plant depression and plant height, seed number/plant, and harvest index depressions were also observed. Grain yield for each genotype under drought stress conditions was recorded, and the varieties 'Plainsman V.', 'GK Bereny' and germplasm 'PC61', 'PC110' showed the best drought tolerance. These genotypes and germplasm will be used in different drought tolerance experiments and breeding programmes.
引用
收藏
页码:369 / 381
页数:13
相关论文
共 50 条
  • [21] Evaluating stress tolerance indices for their comparative validity to access terminal heat stress and heat drought tolerance of winter wheat (Triticum aestivum L.) genotypes
    Bhandari, Radhakrishna
    Paudel, Harikala
    Alharbi, Sulaiman Ali
    Ansari, Mohammad Javed
    Poudel, Mukti Ram
    Neupane, Madhav Prasad
    Solanki, Pratima
    Kushwaha, Ujjawal Kumar Singh
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2024, 18
  • [22] Evaluation of drought tolerance in promising lines and cultivars of bread wheat (Triticum aestivum L.)
    Rashidi, Varahram
    Yani, Saman Chalabi
    Tarinejad, Ali Reza
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 423 - 427
  • [23] Conferring of drought tolerance in wheat (Triticum aestivum L.) genotypes using seedling indices
    Ahmed, Hafiz Ghulam Muhu-Din
    Zeng, Yawen
    Shah, Adnan Noor
    Yar, Muhammad Majid
    Ullah, Aziz
    Ali, Muhammad
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [24] Genetic diversity analysis of Azerbaijani bread wheat (Triticum aestivum L.) genotypes with simple sequence repeat markers linked to drought tolerance
    Mammadova, Ruhangiz
    Akparov, Zeynal
    Amri, Ahmad
    Bakhsh, Allah
    Alo, Fida
    Alizade, Shader
    Amrahov, Nurlan
    Yunisova, Firuza
    GENETIC RESOURCES AND CROP EVOLUTION, 2025, 72 (01) : 315 - 323
  • [25] Identification of Novel QTLs Associated with Frost Tolerance in Winter Wheat (Triticum aestivum L.)
    Bolouri, Parisa
    Haliloglu, Kamil
    Mohammadi, Seyyed Abolghasem
    Turkoglu, Aras
    Ilhan, Emre
    Niedbala, Gniewko
    Szulc, Piotr
    Niazian, Mohsen
    PLANTS-BASEL, 2023, 12 (08):
  • [26] Screening of drought tolerance indices for selection of resistance wheat ( Triticum aestivum L.) landraces under drought stress conditions
    Singh, Chandrakant
    Pansuriya, A. G.
    Mamrutha, H. M.
    Vekaria, D. M.
    ISRAEL JOURNAL OF PLANT SCIENCES, 2024, 71 (1-2) : 57 - 64
  • [27] Diversity among synthetic backcross-derived wheat (Triticum aestivum L.) lines for drought tolerance
    Sohail, Muhammad
    Qamar, Maqsood
    Hussain, Imtiaz
    EUPHYTICA, 2022, 218 (10)
  • [28] Genetic variation in drought tolerance at seedling stage and grain yield in low rainfall environments in wheat (Triticum aestivum L.)
    Sallam, Ahmed
    Mourad, Amira M. I.
    Hussain, Waseem
    Baenziger, P. Stephen
    EUPHYTICA, 2018, 214 (09)
  • [29] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Pandey, Ankita
    Masthigowda, Mamrutha Harohalli
    Kumar, Rakesh
    Mishra, Shalini
    Khobra, Rinki
    Pandey, Girish Chandra
    Singh, Gyanendra
    Singh, Gyanendra Pratap
    PLANT PHYSIOLOGY REPORTS, 2023, 28 (01) : 63 - 77
  • [30] STUDY OF REMOBILIZATION OF WINTER BREAD WHEAT (TRITICUM AESTIVUM L.) UNDER RAINFED CONDITIONS
    Jahangirov, A. A.
    Allahverdiyev, T., I
    Talai, J. M.
    Huseynova, I. M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (03): : 6981 - 6987