Geometric approach on the global conservative solutions of the Camassa-Holm equation

被引:6
作者
Lee, Jae Min [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
Camassa-Holm equation; Global weak conservative solution; Global smoothness of Lagrangian trajectories; SHALLOW-WATER EQUATION; GEODESIC-FLOW; DISSIPATIVE SOLUTIONS; BREAKING WAVES;
D O I
10.1016/j.geomphys.2019.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct global weak conservative solutions of the Camassa-Holm (CH) equation on the periodic domain. We first express the equation in Lagrangian flow variable eta and then transform it using the change of variables rho = root eta(x). The new variable removes the singularity of the CH equation, and we obtain both global weak conservative solutions and global spatial smoothness of the Lagrangian trajectories of the CH equation. This work is motivated by J. Lenells who proved similar results for the Hunter-Saxton equation using the geometric interpretation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 45 条
[1]  
Arnold V.I., 1998, APPL MATH SCI, DOI 10.1007/b97593
[2]   Geometric investigations of a vorticity model equation [J].
Bauer, Martin ;
Kolev, Boris ;
Preston, Stephen C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :478-516
[3]   Multipeakons and the classical moment problem [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 2000, 154 (02) :229-257
[4]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[5]  
Bressan A, 2005, METHODS APPL ANAL, V12, P191
[6]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[7]   UNIQUENESS OF CONSERVATIVE SOLUTIONS TO THE CAMASSA-HOLM EQUATION VIA CHARACTERISTICS [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) :25-42
[8]  
Bruveris M., 2016, LECT NOTES IMS SUMME, P4
[9]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[10]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603