ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network

被引:60
作者
Wu, Zhan [1 ]
Ge, Rongjun [2 ]
Wen, Minli [1 ]
Liu, Gaoshuang [3 ]
Chen, Yang [1 ,2 ,4 ,5 ]
Zhang, Pinzheng [2 ]
He, Xiaopu [3 ]
Hua, Jie [6 ]
Luo, Limin [1 ,2 ,4 ,5 ]
Li, Shuo [7 ]
机构
[1] Southeast Univ, Sch Cyberspace Secur, Nanjing, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Geriatr Gastroenterol, Nanjing, Jiangsu, Peoples R China
[4] Southeast Univ, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing, Peoples R China
[5] Ctr Rech Informat Biomed Sino Francais LIA CRIBs, Rennes, France
[6] Nanjing Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Nanjing, Jiangsu, Peoples R China
[7] Western Univ, Dept Med Imaging, London, ON, Canada
关键词
Esophageal lesions; Deep learning; Dual-stream esophageal lesion classification; Convolutional neural network (CNN);
D O I
10.1016/j.media.2020.101838
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic and accurate esophageal lesion classification and segmentation is of great significance to clinically estimate the lesion statuses of the esophageal diseases and make suitable diagnostic schemes. Due to individual variations and visual similarities of lesions in shapes, colors, and textures, current clinical methods remain subject to potential high-risk and time-consumption issues. In this paper, we propose an Esophageal Lesion Network (ELNet) for automatic esophageal lesion classification and segmentation using deep convolutional neural networks (DCNNs). The underlying method automatically integrates dual-view contextual lesion information to extract global features and local features for esophageal lesion classification and lesion-specific segmentation network is proposed for automatic esophageal lesion annotation at pixel level. For the established clinical large-scale database of 1051 white-light endoscopic images, tenfold cross-validation is used in method validation. Experiment results show that the proposed framework achieves classification with sensitivity of 0.9034, specificity of 0.9718, and accuracy of 0.9628, and the segmentation with sensitivity of 0.8018, specificity of 0.9655, and accuracy of 0.9462. All of these indicate that our method enables an efficient, accurate, and reliable esophageal lesion diagnosis in clinics. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2017, P IEEE INT C COMP VI
[2]  
[Anonymous], 2017, 2017 39 ANN INT C IE
[3]  
[Anonymous], 2001, P 2001 IEEE COMP SOC
[4]  
[Anonymous], 2015, P IEEE INT C COMP VI
[5]  
Antony J., 2016, 2016 23 INT C PATT R
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Multi-layer fusion techniques using a CNN for multispectral pedestrian detection [J].
Chen, Yunfan ;
Xie, Han ;
Shin, Hyunchul .
IET COMPUTER VISION, 2018, 12 (08) :1179-1187
[8]  
Domingues I., 2019, COMPUTER VISION ESOP, V7, P103080
[9]  
Everingham Mark, 2007, The pascal visual object classes challenge 2007 (voc2007) results
[10]   K-Net: Integrate Left Ventricle Segmentation and Direct Quantification of Paired Echo Sequence [J].
Ge, Rongjun ;
Yang, Guanyu ;
Chen, Yang ;
Luo, Limin ;
Feng, Cheng ;
Ma, Hong ;
Ren, Junyi ;
Li, Shuo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) :1690-1702