Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches

被引:100
作者
Abel, Haley J. [1 ]
Duncavage, Eric J. [2 ]
机构
[1] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63130 USA
关键词
Next generation sequencing; massively paralleled sequencing; copy number variation; structural DNA variation; informatics; COPY-NUMBER VARIATION; ACUTE MYELOID-LEUKEMIA; CELL LUNG-CANCER; MYELOGENOUS LEUKEMIA; ACCURATE; EXOME; IDENTIFICATION; GENE; MUTATIONS; DISCOVERY;
D O I
10.1016/j.cancergen.2013.11.002
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Next generation sequencing (NGS), or massively paralleled sequencing, refers to a collective group of methods in which numerous sequencing reactions take place simultaneously, resulting in enormous amounts of sequencing data for a small fraction of the cost of Sanger sequencing. Typically short (50-250 bp), NGS reads are first mapped to a reference genome, and then variants are called from the mapped data. While most NGS applications focus on the detection of single nucleotide variants (SNVs) or small insertions/deletions (indels), structural variation, including translocations, larger indels, and copy number variation (CNV), can be identified from the same data. Structural variation detection can be performed from whole genome NGS data or "targeted" data including exomes or gene panels. However, while targeted sequencing greatly increases sequencing coverage or depth of particular genes, it may introduce biases in the data that require specialized informatic analyses. In the past several years, there have been considerable advances in methods used to detect structural variation, and a full range of variants from SNVs to balanced translocations to CNV can now be detected with reasonable sensitivity from either whole genome or targeted NGS data. Such methods are being rapidly applied to clinical testing where they can supplement or in some cases replace conventional fluorescence in situ hybridization or array-based testing. Here we review some of the informatics approaches used to detect structural variation from NGS data.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 63 条
[1]   SLOPE: a quick and accurate method for locating non-SNP structural variation from targeted next-generation sequence data [J].
Abel, Haley J. ;
Duncavage, Eric J. ;
Becker, Nils ;
Armstrong, Jon R. ;
Magrini, Vincent J. ;
Pfeifer, John D. .
BIOINFORMATICS, 2010, 26 (21) :2684-2688
[2]   CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing [J].
Abyzov, Alexej ;
Urban, Alexander E. ;
Snyder, Michael ;
Gerstein, Mark .
GENOME RESEARCH, 2011, 21 (06) :974-984
[3]   Dindel: Accurate indel calls from short-read data [J].
Albers, Cornelis A. ;
Lunter, Gerton ;
MacArthur, Daniel G. ;
McVean, Gilean ;
Ouwehand, Willem H. ;
Durbin, Richard .
GENOME RESEARCH, 2011, 21 (06) :961-973
[4]   CoNVEX: copy number variation estimation in exome sequencing data using HMM [J].
Amarasinghe, Kaushalya C. ;
Li, Jason ;
Halgamuge, Saman K. .
BMC BIOINFORMATICS, 2013, 14
[5]   Accurate whole human genome sequencing using reversible terminator chemistry [J].
Bentley, David R. ;
Balasubramanian, Shankar ;
Swerdlow, Harold P. ;
Smith, Geoffrey P. ;
Milton, John ;
Brown, Clive G. ;
Hall, Kevin P. ;
Evers, Dirk J. ;
Barnes, Colin L. ;
Bignell, Helen R. ;
Boutell, Jonathan M. ;
Bryant, Jason ;
Carter, Richard J. ;
Cheetham, R. Keira ;
Cox, Anthony J. ;
Ellis, Darren J. ;
Flatbush, Michael R. ;
Gormley, Niall A. ;
Humphray, Sean J. ;
Irving, Leslie J. ;
Karbelashvili, Mirian S. ;
Kirk, Scott M. ;
Li, Heng ;
Liu, Xiaohai ;
Maisinger, Klaus S. ;
Murray, Lisa J. ;
Obradovic, Bojan ;
Ost, Tobias ;
Parkinson, Michael L. ;
Pratt, Mark R. ;
Rasolonjatovo, Isabelle M. J. ;
Reed, Mark T. ;
Rigatti, Roberto ;
Rodighiero, Chiara ;
Ross, Mark T. ;
Sabot, Andrea ;
Sankar, Subramanian V. ;
Scally, Aylwyn ;
Schroth, Gary P. ;
Smith, Mark E. ;
Smith, Vincent P. ;
Spiridou, Anastassia ;
Torrance, Peta E. ;
Tzonev, Svilen S. ;
Vermaas, Eric H. ;
Walter, Klaudia ;
Wu, Xiaolin ;
Zhang, Lu ;
Alam, Mohammed D. ;
Anastasi, Carole .
NATURE, 2008, 456 (7218) :53-59
[6]   AMPLIFICATION OF N-MYC IN UNTREATED HUMAN NEUROBLASTOMAS CORRELATES WITH ADVANCED DISEASE STAGE [J].
BRODEUR, GM ;
SEEGER, RC ;
SCHWAB, M ;
VARMUS, HE ;
BISHOP, JM .
SCIENCE, 1984, 224 (4653) :1121-1124
[7]  
Chen K, 2009, NAT METHODS, V6, P677, DOI [10.1038/NMETH.1363, 10.1038/nmeth.1363]
[8]   High-resolution mapping of copy-number alterations with massively parallel sequencing [J].
Chiang, Derek Y. ;
Getz, Gad ;
Jaffe, David B. ;
O'Kelly, Michael J. T. ;
Zhao, Xiaojun ;
Carter, Scott L. ;
Russ, Carsten ;
Nusbaum, Chad ;
Meyerson, Matthew ;
Lander, Eric S. .
NATURE METHODS, 2009, 6 (01) :99-103
[9]   Performance comparison of exome DNA sequencing technologies [J].
Clark, Michael J. ;
Chen, Rui ;
Lam, Hugo Y. K. ;
Karczewski, Konrad J. ;
Chen, Rong ;
Euskirchen, Ghia ;
Butte, Atul J. ;
Snyder, Michael .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :908-U206
[10]   A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome [J].
Cools, J ;
DeAngelo, DJ ;
Gotlib, J ;
Stover, EH ;
Legare, RD ;
Cortes, J ;
Kutok, J ;
Clark, J ;
Galinsky, I ;
Griffin, JD ;
Cross, NCP ;
Tefferi, A ;
Malone, J ;
Alam, R ;
Schrier, SL ;
Schmid, J ;
Rose, M ;
Vandenberghe, P ;
Verhoef, G ;
Boogaerts, M ;
Wlodarska, I ;
Kantarjian, H ;
Marynen, P ;
Coutre, SE ;
Stone, R ;
Gilliland, DG .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (13) :1201-1214