Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance

被引:247
作者
Wang, Huanwen [1 ]
Yi, Huan [1 ]
Chen, Xiao [1 ]
Wang, Xuefeng [1 ]
机构
[1] Tongji Univ, Dept Chem, Key Lab Yangtze River Water Environm, Minist Educ, Shanghai 200092, Peoples R China
关键词
PULSED-LASER DEPOSITION; ELECTROCHEMICAL CAPACITORS; ENERGY DENSITY; POLYPYRROLE NANOTUBES; ELECTRODE MATERIALS; GRAPHENE NETWORKS; OXIDE ELECTRODE; ARRAYS; ANODE; POWER;
D O I
10.1039/c3ta15046a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A pulsed laser deposition process using ozone as an oxidant is developed to grow NiO nanoparticles on highly conductive three-dimensional (3D) graphene foam (GF). The excellent electrical conductivity and interconnected pore structure of the hybrid NiO/GF electrode facilitate fast electron and ion transportation. The NiO/GF electrode displays a high specific capacitance (1225 F g(-1) at 2 A g(-1)) and a superb rate capability (68% capacity retention at 100 A g(-1)). A novel asymmetric supercapacitor with high power and energy densities is successfully fabricated using NiO/GF as the positive electrode and hierarchical porous nitrogen-doped carbon nanotubes (HPNCNTs) as the negative electrode in aqueous KOH solution. Because of the high individual capacitive performance of NiO/GF and HPNCNTs, as well as the synergistic effect between the two electrodes, the asymmetric capacitor exhibits an excellent energy storage performance. At a voltage range from 0.0 to 1.4 V, an energy density of 32 W h kg(-1) is achieved at a power density of 700 W kg(-1). Even at a 2.8 s charge-discharge rate (42 kW kg(-1)), an energy density as high as 17 W h kg(-1) is retained. Additionally, the NiO/GF//HPNCNT asymmetric supercapacitor exhibits excellent cycling durability, with 94% specific capacitance retained after 2000 cycles.
引用
收藏
页码:3223 / 3230
页数:8
相关论文
共 57 条
  • [1] Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes
    Bao, Lihong
    Zang, Jianfeng
    Li, Xiaodong
    [J]. NANO LETTERS, 2011, 11 (03) : 1215 - 1220
  • [2] Preparation of Novel 3D Graphene Networks for Supercapacitor Applications
    Cao, Xiehong
    Shi, Yumeng
    Shi, Wenhui
    Lu, Gang
    Huang, Xiao
    Yan, Qingyu
    Zhang, Qichun
    Zhang, Hua
    [J]. SMALL, 2011, 7 (22) : 3163 - 3168
  • [3] Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors
    Chen, Li-Feng
    Zhang, Xu-Dong
    Liang, Hai-Wei
    Kong, Mingguang
    Guan, Qing-Fang
    Chen, Ping
    Wu, Zhen-Yu
    Yu, Shu-Hong
    [J]. ACS NANO, 2012, 6 (08) : 7092 - 7102
  • [4] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
  • [5] 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection
    Dong, Xiao-Chen
    Xu, Hang
    Wang, Xue-Wan
    Huang, Yin-Xi
    Chan-Park, Mary B.
    Zhang, Hua
    Wang, Lian-Hui
    Huang, Wei
    Chen, Peng
    [J]. ACS NANO, 2012, 6 (04) : 3206 - 3213
  • [6] Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors
    El-Kady, Maher F.
    Strong, Veronica
    Dubin, Sergey
    Kaner, Richard B.
    [J]. SCIENCE, 2012, 335 (6074) : 1326 - 1330
  • [7] Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density
    Fan, Zhuangjun
    Yan, Jun
    Wei, Tong
    Zhi, Linjie
    Ning, Guoqing
    Li, Tianyou
    Wei, Fei
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) : 2366 - 2375
  • [8] Carbon materials for supercapacitor application
    Frackowiak, Elzbieta
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) : 1774 - 1785
  • [9] Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes
    He, Yongmin
    Chen, Wanjun
    Li, Xiaodong
    Zhang, Zhenxing
    Fu, Jiecai
    Zhao, Changhui
    Xie, Erqing
    [J]. ACS NANO, 2013, 7 (01) : 174 - 182
  • [10] Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples
    Hu, Chi-Chang
    Chen, Jia-Cing
    Chang, Kuo-Hsin
    [J]. JOURNAL OF POWER SOURCES, 2013, 221 : 128 - 133