Room-temperature sub-band gap optoelectronic response of hyperdoped silicon

被引:221
作者
Mailoa, Jonathan P. [1 ]
Akey, Austin J. [1 ]
Simmons, Christie B. [1 ]
Hutchinson, David [2 ]
Mathews, Jay [3 ]
Sullivan, Joseph T. [1 ]
Recht, Daniel [4 ]
Winkler, Mark T. [1 ]
Williams, James S. [5 ]
Warrender, Jeffrey M. [3 ]
Persans, Peter D. [2 ]
Aziz, Michael J. [4 ]
Buonassisi, Tonio [1 ]
机构
[1] MIT, Sch Engn, Cambridge, MA 02139 USA
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] US Army ARDEC, Benet Labs, Watervliet, NY 12189 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
WAVE-GUIDE PHOTODIODES; OPTICAL-PROPERTIES; CROSS-SECTIONS; INFRARED PHOTODIODES; GOLD ACCEPTOR; PHOTOIONIZATION; PHOTO; SI; SEMICONDUCTORS; RECOMBINATION;
D O I
10.1038/ncomms4011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Room-temperature infrared sub-band gap photoresponse in silicon is of interest for telecommunications, imaging and solid-state energy conversion. Attempts to induce infrared response in silicon largely centred on combining the modification of its electronic structure via controlled defect formation (for example, vacancies and dislocations) with waveguide coupling, or integration with foreign materials. Impurity-mediated sub-band gap photo-response in silicon is an alternative to these methods but it has only been studied at low temperature. Here we demonstrate impurity-mediated room-temperature sub-band gap photoresponse in single-crystal silicon-based planar photodiodes. A rapid and repeatable laser-based hyperdoping method incorporates supersaturated gold dopant concentrations on the order of 10(20) cm(-3) into a single-crystal surface layer similar to 150 nm thin. We demonstrate room-temperature silicon spectral response extending to wavelengths as long as 2,200 nm, with response increasing monotonically with supersaturated gold dopant concentration. This hyperdoping approach offers a possible path to tunable, broadband infrared imaging using silicon at room temperature.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
[Anonymous], SOLID STATE ELECT
[2]   TIME-RESOLVED REFLECTIVITY OF ION-IMPLANTED SILICON DURING LASER ANNEALING [J].
AUSTON, DH ;
SURKO, CM ;
VENKATESAN, TNC ;
SLUSHER, RE ;
GOLOVCHENKO, JA .
APPLIED PHYSICS LETTERS, 1978, 33 (05) :437-440
[3]   Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm [J].
Bradley, JDB ;
Jessop, PE ;
Knights, AP .
APPLIED PHYSICS LETTERS, 2005, 86 (24) :1-3
[4]   OPTICAL-PROPERTIES OF GOLD ACCEPTOR AND DONOR LEVELS IN SILICON [J].
BRAUN, S ;
GRIMMEISS, HG .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (06) :2658-2665
[5]   Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm [J].
Bristow, Alan D. ;
Rotenberg, Nir ;
van Driel, Henry M. .
APPLIED PHYSICS LETTERS, 2007, 90 (19)
[6]   SOLUBILITY OF GOLD IN P-TYPE SILICON [J].
BROWN, M ;
JONES, CL ;
WILLOUGHBY, AFW .
SOLID-STATE ELECTRONICS, 1975, 18 (09) :763-770
[7]   ENHANCED GOLD SOLUBILITY EFFECT IN HEAVILY N-TYPE SILICON [J].
CAGNINA, SF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (04) :498-&
[8]   ELECTRON AND HOLE DRIFT VELOCITY-MEASUREMENTS IN SILICON AND THEIR EMPIRICAL RELATION TO ELECTRIC-FIELD AND TEMPERATURE [J].
CANALI, C ;
MAJNI, G ;
MINDER, R ;
OTTAVIANI, G .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, 22 (11) :1045-1047
[9]   Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes [J].
Carey, JE ;
Crouch, CH ;
Shen, MY ;
Mazur, E .
OPTICS LETTERS, 2005, 30 (14) :1773-1775
[10]   Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives [J].
Casalino, Maurizio ;
Coppola, Giuseppe ;
Iodice, Mario ;
Rendina, Ivo ;
Sirleto, Luigi .
SENSORS, 2010, 10 (12) :10571-10600