The resurgent character of the Fatou coordinates of a simple parabolic germ

被引:3
作者
Dudko, Artem [1 ]
Sauzin, David [2 ]
机构
[1] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11790 USA
[2] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio De Giorgi, Lab Fibonacci, CNRS UMI 3483, Pisa, Italy
关键词
D O I
10.1016/j.crma.2013.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a holomorphic germ at the origin of C with a simple parabolic fixed point, the local dynamics is classically described by means of pairs of attracting and repelling Fatou coordinates and the corresponding pairs of horn maps, of crucial importance for Ecalle-Voronin's classification result and the definition of the parabolic renormalization operator. We revisit Ecalle's approach to the construction of Fatou coordinates, which relies on Borel-Laplace summation, and give an original and self-contained proof of their resurgent character. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 9 条
[1]  
Dudko A., 2013, PREPRINT
[2]  
Ecalle J., 1981, PUBL MATH ORSAY, V2, P81
[3]  
Ecalle J, 1981, PUBL MATH ORSAY, V2, P81
[4]  
Lanford III O., 2012, ARXIV11082801
[5]  
Loray F., 2005, PREPRINT
[6]  
MALGRANGE B, 1982, ASTERISQUE, P59
[7]  
MALGRANGE B., 1995, Exposition. Math., V13, P163
[8]  
Ramis J.-P., 1994, PANORAMAS SYNTHESES, V121