Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices

被引:33
作者
Gabrys, Paul A. [1 ]
Zornberg, Leonardo Z. [1 ]
Macfarlane, Robert J. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
crystallization; DNA; nanoparticle superlattices; programmable atom equivalents; BIO-BARCODE ASSAY; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; COLLOIDAL CRYSTALS; STRUCTURAL-CHARACTERIZATION; REVERSIBLE AGGREGATION; PHASE-BEHAVIOR; QUANTUM DOTS; DNA; BINARY;
D O I
10.1002/smll.201805424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale "artificial atoms" to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP-based crystals are not always as well-understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA-grafted NPs have emerged as a strong candidate for such a "programmable atom equivalent" (PAE), because the predictable nature of DNA base-pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.
引用
收藏
页数:20
相关论文
共 236 条
[51]  
Ducrot E, 2017, NAT MATER, V16, P652, DOI [10.1038/NMAT4869, 10.1038/nmat4869]
[52]   Three-dimensional nanomagnetism [J].
Fernandez-Pacheco, Amalio ;
Streubel, Robert ;
Fruchart, Olivier ;
Hertel, Riccardo ;
Fischer, Peter ;
Cowburn, Russell P. .
NATURE COMMUNICATIONS, 2017, 8
[53]   MICROSTRUCTURAL EVOLUTION IN THIN-FILMS [J].
FROST, HJ .
MATERIALS CHARACTERIZATION, 1994, 32 (04) :257-273
[54]   In situ observation of twin boundary formation at grain-boundary groove during directional solidification of Si [J].
Fujiwara, Kozo ;
Maeda, Ryoichi ;
Maeda, Kensaku ;
Morito, Haruhiko .
SCRIPTA MATERIALIA, 2017, 133 :65-69
[55]   Lattice Mismatch in Crystalline Nanoparticle Thin Films [J].
Gabrys, Paul A. ;
Seo, Soyoun E. ;
Wang, Mary X. ;
Oh, EunBi ;
Macfarlane, Robert J. ;
Mirkin, Chad A. .
NANO LETTERS, 2018, 18 (01) :579-585
[56]   Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease [J].
Georganopoulou, DG ;
Chang, L ;
Nam, JM ;
Thaxton, CS ;
Mufson, EJ ;
Klein, WL ;
Mirkin, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (07) :2273-2276
[57]   Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles [J].
Giljohann, David A. ;
Seferos, Dwight S. ;
Patel, Pinal C. ;
Millstone, Jill E. ;
Rosi, Nathaniel L. ;
Mirkin, Chad A. .
NANO LETTERS, 2007, 7 (12) :3818-3821
[58]   A bio-barcode assay for on-chip attomolar-sensitivity protein detection [J].
Goluch, Edgar D. ;
Nam, Jwa-Min ;
Georganopoulou, Dimitra G. ;
Chiesl, Thomas N. ;
Shaikh, Kashan A. ;
Ryu, Kee S. ;
Barron, Annelise E. ;
Mirkin, Chad A. ;
Liu, Chang .
LAB ON A CHIP, 2006, 6 (10) :1293-1299
[59]   Nanofabricated particles for engineered drug therapies:: A preliminary Biodistribution study of PRINT ™ nanoparticles [J].
Gratton, Stephanie E. A. ;
PohhauS, Patrick D. ;
Lee, Jin ;
Guo, Ii ;
Cho, Moo J. ;
DeSimone, Joseph M. .
JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) :10-18
[60]   Structural color and the lotus effect [J].
Gu, ZZ ;
Uetsuka, H ;
Takahashi, K ;
Nakajima, R ;
Onishi, H ;
Fujishima, A ;
Sato, O .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (08) :894-+