Cluster algebras and semi-invariant rings II: projections

被引:5
作者
Fei, Jiarui [1 ]
机构
[1] Natl Ctr Theoret Sci, Taipei 10617, Taiwan
关键词
Cluster algebra; Semi-invariant ring; Quiver representation; Graded upper cluster algebra; Quiver with potential; Weight restriction; Orthogonal projection; Vertex removal; Exceptional sequence; Cluster character; Polytope; Lattice point; QUIVERS; REPRESENTATIONS; COEFFICIENTS; POTENTIALS; SATURATION; MODULI;
D O I
10.1007/s00209-016-1733-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let SI beta(Q) be the semi-invariant ring of beta-dimensional representations of a quiver Q. Suppose that (Q, beta) projects to another quiver with dimension vector (Q', beta') through an exceptional representation E. We show that if SI beta(Q) is the upper cluster algebra associated to an ice quiver Delta, then SI beta' (Q') is the upper cluster algebra associated to Delta' , where Delta' is obtained from Delta through simple operations depending on E. We also study the relation of their bases using the quiver with potential model.
引用
收藏
页码:939 / 966
页数:28
相关论文
共 29 条
[1]  
[Anonymous], 1972, INTRO LIE ALGEBRAS R
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[4]   Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients [J].
Derksen, H ;
Weyman, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (03) :467-479
[5]   General presentations of algebras [J].
Derksen, Harm ;
Fei, Jiarui .
ADVANCES IN MATHEMATICS, 2015, 278 :210-237
[6]   THE COMBINATORICS OF QUIVER REPRESENTATIONS [J].
Derksen, Harm ;
Weyman, Jerzy .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (03) :1061-1131
[7]   QUIVERS WITH POTENTIALS AND THEIR REPRESENTATIONS II: APPLICATIONS TO CLUSTER ALGEBRAS [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :749-790
[8]   Quivers with potentials and their representations I: Mutations [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
SELECTA MATHEMATICA-NEW SERIES, 2008, 14 (01) :59-119
[9]   Semi-invariants of quivers as determinants [J].
Domokos, M ;
Zubkov, AN .
TRANSFORMATION GROUPS, 2001, 6 (01) :9-24
[10]  
Fei J., ARXIV14114693