Effect of water stress "memory" on plant behavior during subsequent drought stress

被引:88
作者
Tombesi, Sergio [1 ,2 ]
Frioni, Tommaso [1 ,2 ]
Poni, Stefano [1 ]
Palliotti, Alberto [2 ]
机构
[1] Univ Cattolica Sacro Cuore, DIPROVES, Via Emilia Parmense 84, Piacenza, Italy
[2] Univ Perugia, DSA3, Borgo 20 Giugno 74, Perugia, Italy
关键词
Vitis vinifera; Embolism; Climate change; Drought; Stress priming; VITIS-VINIFERA; HYDRAULIC CONDUCTANCE; STOMATAL CONDUCTANCE; XYLEM CAVITATION; CLIMATE-CHANGE; GRAPEVINE; EMBOLISM; VULNERABILITY; ADAPTATION; LIMITATION;
D O I
10.1016/j.envexpbot.2018.03.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Frequency of extreme drought events are expected to increase due to climate change. Perennials are increasingly exposed to recurrent drought during their life span. The aim of the present work was to study the effect of recurrent droughts on the behavior of Vitis vinifera under water stress. Sangiovese and Montepulciano vines were exposed to severe drought stress for 4 years (WS-S). A dry-down experiment was carried out to compare their behavior with a set of vines kept at 90% field capacity during the whole seasons in the previous 4 years (WW-S). WS-S vines had higher transpiration and stomatal conductance than WW-S vines. Net photosynthesis was almost unaffected by the treatment. Stomatal conductance was higher at more negative Psi(stem) in WS-S vines than in control vines. Leaf petiole percentage loss of hydraulic conductance, measured during water stress, was higher in WS-S than in WW-S vines. Results indicate that previous water stress can lead to less conservative plant strategy toward water loss and decreased water use efficiency. This behavior seems to be coordinated with the different stomatal response to decreasing water potential that caused a reduction of xylem hydraulic safety margin in WS-S vines in comparison with WW-S vines.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 44 条
[1]   Adaptation, migration or extirpation: climate change outcomes for tree populations [J].
Aitken, Sally N. ;
Yeaman, Sam ;
Holliday, Jason A. ;
Wang, Tongli ;
Curtis-McLane, Sierra .
EVOLUTIONARY APPLICATIONS, 2008, 1 (01) :95-111
[2]  
[Anonymous], PLANT CELL ENVIRON
[3]   Temperate forest trees and stands under severe drought:: a review of ecophysiological responses, adaptation processes and long-term consequences [J].
Breda, Nathalie ;
Huc, Roland ;
Granier, Andre ;
Dreyer, Erwin .
ANNALS OF FOREST SCIENCE, 2006, 63 (06) :625-644
[4]   Stressful "memories" of plants: Evidence and possible mechanisms [J].
Bruce, Toby J. A. ;
Matthes, Michaela C. ;
Napier, Johnathan A. ;
Pickett, John A. .
PLANT SCIENCE, 2007, 173 (06) :603-608
[5]   Grapevine under deficit irrigation: hints from physiological and molecular data [J].
Chaves, M. M. ;
Zarrouk, O. ;
Francisco, R. ;
Costa, J. M. ;
Santos, T. ;
Regalado, A. P. ;
Rodrigues, M. L. ;
Lopes, C. M. .
ANNALS OF BOTANY, 2010, 105 (05) :661-676
[6]   How plants cope with water stress in the field.: Photosynthesis and growth [J].
Chaves, MM ;
Pereira, JS ;
Maroco, J ;
Rodrigues, ML ;
Ricardo, CPP ;
Osório, ML ;
Carvalho, I ;
Faria, T ;
Pinheiro, C .
ANNALS OF BOTANY, 2002, 89 :907-916
[7]   Global convergence in the vulnerability of forests to drought [J].
Choat, Brendan ;
Jansen, Steven ;
Brodribb, Tim J. ;
Cochard, Herve ;
Delzon, Sylvain ;
Bhaskar, Radika ;
Bucci, Sandra J. ;
Feild, Taylor S. ;
Gleason, Sean M. ;
Hacke, Uwe G. ;
Jacobsen, Anna L. ;
Lens, Frederic ;
Maherali, Hafiz ;
Martinez-Vilalta, Jordi ;
Mayr, Stefan ;
Mencuccini, Maurizio ;
Mitchell, Patrick J. ;
Nardini, Andrea ;
Pittermann, Jarmila ;
Pratt, R. Brandon ;
Sperry, John S. ;
Westoby, Mark ;
Wright, Ian J. ;
Zanne, Amy E. .
NATURE, 2012, 491 (7426) :752-+
[8]   Drought under global warming: a review [J].
Dai, Aiguo .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2011, 2 (01) :45-65
[9]   An overview of models of stomatal conductance at the leaf level [J].
Damour, Gaeelle ;
Simonneau, Thierry ;
Cochard, Herve ;
Urban, Laurent .
PLANT CELL AND ENVIRONMENT, 2010, 33 (09) :1419-1438
[10]   Open or close the gate - stomata action under the control of phytohormones in drought stress conditions [J].
Daszkowska-Golec, Agata ;
Szarejko, Iwona .
FRONTIERS IN PLANT SCIENCE, 2013, 4