Soliton solutions and self-steepening in the photon-conserving nonlinear Schrodinger equation

被引:9
作者
Hernandez, S. M. [1 ]
Bonetti, J. [2 ,3 ]
Linale, N. [2 ,3 ]
Grosz, D. F. [2 ,3 ]
Fierens, P. I. [3 ,4 ]
机构
[1] Univ Nacl Cuyo, Inst Balseiro, Mendoza, Rio Negro, Argentina
[2] Comis Nacl Energia Atom, Ctr Atom Bariloche, Dept Ingn Telecomunicac, San Carlos De Bariloche, Rio Negro, Argentina
[3] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, DF, Argentina
[4] Inst Tecnol Buenos Aires ITBA, Ctr Optoelect, Buenos Aires, DF, Argentina
关键词
Nonlinear optics; nonlinear Schrö dinger equation; soliton; self-steepening; photon number; PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; MODULATION INSTABILITY; OPTICAL CHARACTERISTICS; ULTRASHORT PULSES; NANOPARTICLES; CYCLE; DYNAMICS; WAVES;
D O I
10.1080/17455030.2020.1856970
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have recently introduced a new modeling equation for the propagation of pulses in optical waveguides, the photon-conserving Nonlinear Schrodinger Equation (pcNLSE) which, unlike the canonical NLSE, guarantees strict conservation of both the energy and the number of photons for any arbitrary frequency-dependent nonlinearity. In this paper, we analyze some properties of this new equation in the familiar case where the nonlinear coefficient of the waveguide does not change sign. We show that the pcNLSE effectively adds a correction term to the NLSE proportional to the deviation of the self-steepening (SS) parameter from the photon-conserving condition in the NLSE. Furthermore, we describe the role of the self-steepening parameter in the context of the conservation of the number of photons and derive an analytical expression for the relation of the SS parameter with the time delay experienced by pulses upon propagation. Finally, we put forth soliton-like solutions of the pcNLSE that, unlike NLSE solitons, conserve the number of photons for any arbitrary SS parameter.
引用
收藏
页码:2533 / 2549
页数:17
相关论文
共 64 条
[1]   Linear and nonlinear wave propagation in negative refraction metamaterials [J].
Agranovich, VM ;
Shen, YR ;
Baughman, RH ;
Zakhidov, AA .
PHYSICAL REVIEW B, 2004, 69 (16) :165112-1
[2]  
Agrawal G.P., 2000, Nonlinear fiber optics
[3]   Hamiltonian structure of propagation equations for ultrashort optical pulses [J].
Amiranashvili, Sh. ;
Demircan, A. .
PHYSICAL REVIEW A, 2010, 82 (01)
[4]   Numerical methods for accurate description of ultrashort pulses in optical fibers [J].
Amiranashvili, Shalva ;
Radziunas, Mindaugas ;
Bandelow, Uwe ;
Ciegis, Raimondas .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 :391-402
[5]  
Amiranashvili S, 2016, LECT NOTES PHYS, V908, P153, DOI 10.1007/978-3-319-20690-5_6
[6]  
[Anonymous], 2020, SUP PHT CRYST FIB DA
[7]   Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity [J].
Arteaga-Sierra, F. R. ;
Antikainen, A. ;
Agrawal, Govind P. .
PHYSICAL REVIEW A, 2018, 98 (01)
[8]   RMS CHARACTERISTICS OF PULSES IN NONLINEAR DISPERSIVE LOSSY FIBERS [J].
BELANGER, PA ;
BELANGER, N .
OPTICS COMMUNICATIONS, 1995, 117 (1-2) :56-60
[9]   THEORETICAL DESCRIPTION OF TRANSIENT STIMULATED RAMAN-SCATTERING IN OPTICAL FIBERS [J].
BLOW, KJ ;
WOOD, D .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (12) :2665-2673
[10]   Photon-conserving generalized nonlinear Schrodinger equation for frequency-dependent nonlinearities [J].
Bonetti, J. ;
Linale, N. ;
Sanchez, A. D. ;
Hernandez, S. M. ;
Fierens, P., I ;
Grosz, D. F. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (02) :445-450