Scene Dynamics Estimation for Parameter Adjustment of Gaussian Mixture Models

被引:2
作者
Zhang, Rui [1 ,2 ]
Gong, Weiguo [1 ]
Grzeda, Victor [2 ]
Yaworski, Andrew [2 ]
Greenspan, Michael [2 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chingqing 400044, Peoples R China
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
基金
中国国家自然科学基金;
关键词
Background modeling; Gaussian mixture models; parameter adjustment; scene dynamics; video surveillance;
D O I
10.1109/LSP.2014.2326916
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The scene dynamics can provide useful statistical information for adjusting parameters of Gaussian mixture models (GMMs) in video surveillance. The contributions of this paper are twofold. First, an adaptive scene dynamics estimation approach is proposed. Second, we propose a scene-dynamics based method to adjust two types of GMMs' parameters, i.e., the learning rates and number of Gaussian components. For the learning rates, the scene dynamics are integrated into different kinds of pixel-type feedback schemes to control different kinds of learning rates. Experimental results demonstrate that the proposed method can effectively improve the performance of GMMs in surveillance scenes with complex dynamic backgrounds.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 18 条
  • [1] [Anonymous], 2012, P IEEE WORKSH CHANG
  • [2] [Anonymous], P 2 EUR WORKSH ADV V
  • [3] ViBe: A Universal Background Subtraction Algorithm for Video Sequences
    Barnich, Olivier
    Van Droogenbroeck, Marc
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) : 1709 - 1724
  • [4] Bouwmans Thierry, 2011, Recent Patents on Computer Science, V4, P147, DOI 10.2174/1874479611104030147
  • [5] Finding flicker: critical differences in temporal frequency capture attention
    Cass, John
    Van der Burg, Erik
    Alais, David
    [J]. FRONTIERS IN PSYCHOLOGY, 2011, 2
  • [6] Evangelio R. H., 2011, Proceedings of the 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2011), P71, DOI 10.1109/AVSS.2011.6027297
  • [7] Splitting Gaussians in Mixture Models
    Evangelio, Ruben Heras
    Paetzold, Michael
    Sikora, Thomas
    [J]. 2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 300 - 305
  • [8] Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions
    Grondin, Simon
    [J]. ATTENTION PERCEPTION & PSYCHOPHYSICS, 2010, 72 (03) : 561 - 582
  • [9] Effective Gaussian mixture learning for video background subtraction
    Lee, DS
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (05) : 827 - 832
  • [10] Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling
    Lin, Horng-Horng
    Chuang, Jen-Hui
    Liu, Tyng-Luh
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) : 822 - 836