Strategies to use microRNAs as therapeutic targets

被引:49
作者
Krutzfeldt, Jan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Zurich, Div Endocrinol Diabet & Clin Nutr, CH-8006 Zurich, Switzerland
[2] Univ Zurich Hosp, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Competence Ctr Personalized Med, Zurich, Switzerland
[4] Univ Zurich, CH-8006 Zurich, Switzerland
[5] Univ Zurich, Zurich Ctr Integrat Human Physiol, CH-8006 Zurich, Switzerland
关键词
microRNA; oligonucleotide inhibitors; small molecules; nanoparticles; metabolism; cancer; SINGLE-STRANDED SIRNAS; IN-VIVO DELIVERY; SYSTEMIC DELIVERY; TUMOR-SUPPRESSOR; SMALL MOLECULES; UP-REGULATION; GENE; EXPRESSION; MIR-122; DESIGN;
D O I
10.1016/j.beem.2016.07.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
MicroRNAs (miRNAs) provide a unique mechanism of gene regulation and play a key role in different pathologies ranging from metabolic diseases to cancer. miRNAs can impact biological function as either suppressors of gene expression when their expression levels are enhanced in a disease state or they can cause upregulation of gene expression when their expression levels are reduced. Therefore both gain- and loss-of- function strategies are needed to fully exploit their therapeutic potential. miRNA research first focused on inhibition of single miRNAs using oligonucleotide inhibitors. However, more recent approaches explore the potential to deliver oligonucleotides to mimic miRNA expression or to employ small molecules to increase or inhibit miRNA function. Although we need to know more about the potential side effects and tissue specific delivery systems, these studies provide grounds to further exploit miRNAs as novel therapeutic targets in the clinic. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:551 / 561
页数:11
相关论文
共 69 条
[1]   Target RNA-Directed Trimming and Tailing of Small Silencing RNAs [J].
Ameres, Stefan L. ;
Horwich, Michael D. ;
Hung, Jui-Hung ;
Xu, Jia ;
Ghildiyal, Megha ;
Weng, Zhiping ;
Zamore, Phillip D. .
SCIENCE, 2010, 328 (5985) :1534-1539
[2]   Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells [J].
Avci, Cigir Biray ;
Ozcan, Ipek ;
Balci, Tugce ;
Ozer, Ozgen ;
Gunduz, Cumhur .
CELL BIOLOGY INTERNATIONAL, 2013, 37 (11) :1205-1214
[3]  
Bader Andreas G., 2012, Frontiers in Genetics, V3, P120, DOI 10.3389/fgene.2012.00120
[4]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[5]  
Chang Jinhong, 2004, RNA Biol, V1, P106, DOI 10.4161/rna.1.2.1066
[6]   The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery [J].
Cheng, Xinwei ;
Lee, Robert J. .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 99 :129-137
[7]   Systemic Delivery of a miR34a Mimic as a Potential Therapeutic for Liver Cancer [J].
Daige, Christopher L. ;
Wiggins, Jason F. ;
Priddy, Leslie ;
Nelligan-Davis, Terri ;
Zhao, Jane ;
Brown, David .
MOLECULAR CANCER THERAPEUTICS, 2014, 13 (10) :2352-2360
[8]   Potent inhibition of microRNA in vivo without degradation [J].
Davis, Scott ;
Propp, Stephanie ;
Freier, Susan M. ;
Jones, Laura E. ;
Serra, Martin J. ;
Kinberger, Garth ;
Bhat, Balkrishen ;
Swayze, Eric E. ;
Bennett, C. Frank ;
Esau, Christine .
NUCLEIC ACIDS RESEARCH, 2009, 37 (01) :70-77
[9]   In Vivo Activity of MiR-34a Mimics Delivered by Stable Nucleic Acid Lipid Particles (SNALPs) against Multiple Myeloma [J].
Di Martino, Maria Teresa ;
Campani, Virginia ;
Misso, Gabriella ;
Cantafio, Maria Eugenia Gallo ;
Gulla, Annamaria ;
Foresta, Umberto ;
Guzzi, Pietro Hiram ;
Castellano, Maria ;
Grimaldi, Anna ;
Gigantino, Vincenzo ;
Franco, Renato ;
Lusa, Sara ;
Cannataro, Mario ;
Tagliaferri, Pierosandro ;
De Rosa, Giuseppe ;
Tassone, Pierfrancesco ;
Caraglia, Michele .
PLOS ONE, 2014, 9 (02)
[10]   Phosphorothioates, Essential Components of Therapeutic Oligonucleotides [J].
Eckstein, Fritz .
NUCLEIC ACID THERAPEUTICS, 2014, 24 (06) :374-387