NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

被引:292
作者
Cook, Bruce D. [1 ]
Corp, Lawrence A. [2 ]
Nelson, Ross F. [1 ]
Middleton, Elizabeth M. [1 ]
Morton, Douglas C. [1 ]
McCorkel, Joel T. [1 ]
Masek, Jeffrey G. [1 ]
Ranson, Kenneth J. [1 ]
Vuong Ly [1 ]
Montesano, Paul M. [2 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Sigma Space Corp, Lanham, MD 20706 USA
关键词
remote sensing; airborne scanning LiDAR; imaging spectroscopy; surface temperature; sensor fusion; data fusion; ecosystem structure; forest disturbance; forest health; primary production; CARBON;
D O I
10.3390/rs5084045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximate to 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km(2) of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.
引用
收藏
页码:4045 / 4066
页数:22
相关论文
共 28 条
[1]   A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales [J].
Anderson, M. C. ;
Norman, J. M. ;
Kustas, W. P. ;
Houborg, R. ;
Starks, P. J. ;
Agam, N. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) :4227-4241
[2]   Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (wLiDAR) for three-dimensional studies of ecosystems [J].
Asner, Gregory P. ;
Knapp, David E. ;
Kennedy-Bowdoin, Ty ;
Jones, Matthew O. ;
Martin, Roberta E. ;
Boardman, Joseph ;
Field, Christopher B. .
JOURNAL OF APPLIED REMOTE SENSING, 2007, 1 (01)
[3]   Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion [J].
Asner, Gregory P. ;
Knapp, David E. ;
Boardman, Joseph ;
Green, Robert O. ;
Kennedy-Bowdoin, Ty ;
Eastwood, Michael ;
Martin, Roberta E. ;
Anderson, Christopher ;
Field, Christopher B. .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :454-465
[4]   Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions [J].
Bergen, K. M. ;
Goetz, S. J. ;
Dubayah, R. O. ;
Henebry, G. M. ;
Hunsaker, C. T. ;
Imhoff, M. L. ;
Nelson, R. F. ;
Parker, G. G. ;
Radeloff, V. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
[5]   Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery [J].
Berni, J. A. J. ;
Zarco-Tejada, P. J. ;
Sepulcre-Canto, G. ;
Fereres, E. ;
Villalobos, F. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (11) :2380-2388
[6]  
Bird R.E., 1981, No. SERI/TR-642-761
[7]   Facility for spectral irradiance and radiance responsivity calibrations using uniform sources [J].
Brown, Steven W. ;
Eppeldauer, George P. ;
Lykke, Keith R. .
APPLIED OPTICS, 2006, 45 (32) :8218-8237
[8]   Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests [J].
Chambers, Jeffrey Q. ;
Asner, Gregory P. ;
Morton, Douglas C. ;
Anderson, Liana O. ;
Saatch, Sassan S. ;
Espirito-Santo, Fernando D. B. ;
Palace, Michael ;
Souza, Carlos, Jr. .
TRENDS IN ECOLOGY & EVOLUTION, 2007, 22 (08) :414-423
[9]   Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance [J].
Cook, Bruce D. ;
Bolstad, Paul V. ;
Martin, Jonathan G. ;
Heinsch, Faith Ann ;
Davis, Kenneth J. ;
Wang, Weiguo ;
Desai, Ankur R. ;
Teclaw, Ron M. .
ECOSYSTEMS, 2008, 11 (01) :26-44
[10]   Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations [J].
Cook, Bruce D. ;
Bolstad, Paul V. ;
Naesset, Erik ;
Anderson, Ryan S. ;
Garrigues, Sebastian ;
Morisette, Jeffrey T. ;
Nickeson, Jaime ;
Davis, Kenneth J. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (11) :2366-2379