Data-driven kNN estimation in nonparametric functional data analysis

被引:77
作者
Kara, Lydia-Zaitri [1 ]
Laksaci, Ali [1 ]
Rachdi, Mustapha [2 ]
Vieu, Philippe [3 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, LSPS, Sidi Bel Abbes, Algeria
[2] Univ Grenoble Alpes, AGIM Team, AGEIS EA 7407, Grenoble, France
[3] Univ Paul Sabatier, IMT, Toulouse, France
关键词
Functional data analysis; UINN consistency; Functional nonparametric statistics; kNN estimator; Data-driven estimator; UNIFORM CONSISTENCY; CONDITIONAL DENSITY; REGRESSION; CONVERGENCE;
D O I
10.1016/j.jmva.2016.09.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kernel nearest-neighbor (kNN) estimators are introduced for the nonparametric analysis of statistical samples involving functional data. Asymptotic theory is provided for several different target operators including regression, conditional density, conditional distribution and hazard operators. The main point of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed methods fully automatic. As a by-product of our proofs we state consistency results for kNN functional estimators which are uniform in the number of neighbors (UINN). Some simulated experiences illustrate the feasibility and the finite-sample behavior of the method. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:176 / 188
页数:13
相关论文
共 44 条
[1]   Partial linear modelling with multi-functional covariates [J].
Aneiros, German ;
Vieu, Philippe .
COMPUTATIONAL STATISTICS, 2015, 30 (03) :647-671
[2]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[3]  
[Anonymous], 2015, GLARMA PACKAGE
[4]  
[Anonymous], 2002, DISTRIBUTION FREE TH
[5]   Higher order estimation at Lebesgue points [J].
Beirlant, J. ;
Berlinet, A. ;
Biau, G. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2008, 60 (03) :651-677
[6]   Local smoothing regression with functional data [J].
Benhenni, K. ;
Ferraty, F. ;
Rachdi, M. ;
Vieu, P. .
COMPUTATIONAL STATISTICS, 2007, 22 (03) :353-369
[7]   Rates of Convergence of the Functional k-Nearest Neighbor Estimate [J].
Biau, Gerard ;
Cerou, Frederic ;
Guyader, Arnaud .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :2034-2040
[8]  
Bongiorno E.G., 2014, Contributions in Infinite-Dimensional Statistics and Related Topics, P1
[9]   k-Nearest Neighbour method in functional nonparametric regression [J].
Burba, Florent ;
Ferraty, Frederic ;
Vieu, Philippe .
JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (04) :453-469
[10]  
Cerou F., 2006, ESAIM: Probability and Statistics, V10, P340, DOI DOI 10.1051/PS:2006014