Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform

被引:2
作者
Woolf, Michael Shane [1 ]
Dignan, Leah M. [1 ]
Karas, Scott M. [1 ]
Lewis, Hannah M. [1 ]
Hadley, Kevyn C. [1 ]
Nauman, Aeren Q. [1 ,2 ]
Gates-Hollingsworth, Marcellene A. [3 ]
AuCoin, David P. [3 ]
Green, Heather R. [3 ]
Geise, Geoffrey M. [4 ]
Landers, James P. [1 ,5 ,6 ]
机构
[1] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA
[2] TeGrex Technol, Charlottesville, VA 22903 USA
[3] Univ Nevada, Dept Microbiol & Immunol, Reno, NV 89557 USA
[4] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA
[5] Univ Virginia, Dept Mech Engn, Charlottesville, VA 22904 USA
[6] Univ Virginia, Dept Pathol, Charlottesville, VA 22904 USA
关键词
microfluidic; centrifugal; embedded membrane; membrane deswelling; orthogonal flow; exponential decay; decay constant; RADIAL CAPILLARY PENETRATION; ANALYSIS SYSTEMS; ENTRY PRESSURE; PORE-SIZE; LIQUID; PAPER; RESISTANCE; MEMBRANES;
D O I
10.3390/mi13030487
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To bring to bear the power of centrifugal microfluidics on vertical flow immunoassays, control of flow orthogonally through nanoporous membranes is essential. The on-disc approach described here leverages the rapid print-cut-laminate (PCL) disc fabrication and prototyping method to create a permanent seal between disc materials and embedded nanoporous membranes. Rotational forces drive fluid flow, replacing capillary action, and complex pneumatic pumping systems. Adjacent microfluidic features form a flow path that directs fluid orthogonally (vertically) through these embedded membranes during assay execution. This method for membrane incorporation circumvents the need for solvents (e.g., acetone) to create the membrane-disc bond and sidesteps issues related to undesirable bypass flow. In other recently published work, we described an orthogonal flow (OF) platform that exploited embedded membranes for automation of enzyme-linked immunosorbent assays (ELISAs). Here, we more fully characterize flow patterns and cellulosic membrane behavior within the centrifugal orthogonal flow (cOF) format. Specifically, high-speed videography studies demonstrate that sample volume, membrane pore size, and ionic composition of the sample matrix significantly impact membrane behavior, and consequently fluid drainage profiles, especially when cellulosic membranes are used. Finally, prototype discs are used to demonstrate proof-of-principle for sandwich-type antigen capture and immunodetection within the cOF system.
引用
收藏
页数:16
相关论文
共 57 条
[21]  
Gugliuzza A., 2016, ENCY MEMBRANES, P1801
[22]  
Gugliuzza A., 2016, ENCY MEMBRANES, P1251
[23]   Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia [J].
Jensen, Kaare H. ;
Valente, Andre X. C. N. ;
Stone, Howard A. .
PHYSICS OF FLUIDS, 2014, 26 (05)
[24]   Lateral and Vertical Flow Assays for Point-of-Care Diagnostics [J].
Jiang, Nan ;
Ahmed, Rajib ;
Damayantharan, Mylon ;
Unal, Baris ;
Butt, Haider ;
Yetisen, Ali K. .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (14)
[25]   Paper-based multiplexed vertical flow assay for point-of-care testing [J].
Joung, Hyou-Arm ;
Ballard, Zachary S. ;
Ma, Alice ;
Tseng, Derek K. ;
Teshome, Hailemariam ;
Burakowski, Spencer ;
Garner, Omai B. ;
Di Carlo, Dino ;
Ozcan, Aydogan .
LAB ON A CHIP, 2019, 19 (06) :1027-1034
[26]   Flow control for lateral flow strips with centrifugal microfluidics [J].
Kainz, Daniel M. ;
Frueh, Susanna M. ;
Hutzenlaub, Tobias ;
Zengerle, Roland ;
Paust, Nils .
LAB ON A CHIP, 2019, 19 (16) :2718-2727
[27]  
Karle M., 2013, P 2013 TRANSD EUR 27, P1235
[28]   SWELLING DESWELLING OF ANIONIC COPOLYMER GELS [J].
KHARE, AR ;
PEPPAS, NA .
BIOMATERIALS, 1995, 16 (07) :559-567
[29]   CRITICAL ENTRY PRESSURE FOR LIQUIDS IN HYDROPHOBIC MEMBRANES [J].
KIM, BS ;
HARRIOTT, P .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1987, 115 (01) :1-8
[30]   Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay [J].
Lai, S ;
Wang, SN ;
Luo, J ;
Lee, LJ ;
Yang, ST ;
Madou, MJ .
ANALYTICAL CHEMISTRY, 2004, 76 (07) :1832-1837