Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions

被引:68
作者
El-Deeb, Sheeza M. [1 ]
Bulboaca, Teodor [2 ]
Dziok, Jacek [3 ]
机构
[1] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
[2] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[3] Univ Rzeszow, Fac Math & Nat Sci, PL-35310 Rzeszow, Poland
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 02期
关键词
univalent functions; differential subordination; Pascal distribution series; Hadamard (convolution) product; k-uniformly starlike and k-uniformly conex functions;
D O I
10.5666/KMJ.2019.59.2.301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. For these functions, for linear combinations of these functions and their derivatives, for operators defined by convolution products, and for the Alexander-type integral operator, we find simple sufficient conditions such that these mapping belong to a general class of functions defined and studied by Goodman, Winning, and Bharati et al.
引用
收藏
页码:301 / 314
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1991, Ann. Univ. Mariae Curie-Skodowska Sect. Math
[2]  
Aouf M. K., 2016, REND MAT, V24, P361
[3]  
Bharati R., 1997, TAMKANG J MATH, V28, P17
[4]  
Bulboaca T, 2005, Differential subordinations and superordinations, Recent Results
[5]   CLASS OF UNIVALENT FUNCTIONS [J].
CAPLINGER, TR ;
CAUSEY, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 39 (02) :357-361
[6]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[7]  
Goodman A., 1991, Annales Polonici Mathematici, V56, P87, DOI [DOI 10.4064/ap-56-1-87-92, 10.4064/ap-56-1-87-92, DOI 10.4064/AP-56-1-87-92]
[8]   ON UNIFORMLY STARLIKE FUNCTIONS [J].
GOODMAN, AW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 155 (02) :364-370
[9]  
JUNEJA OP, 1979, B SCI MATH, V103, P435
[10]   Linear operators associated with k-uniformly convex functions [J].
Kanas, S ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (02) :121-132