Dysprosium and Holmium Vanadate Nanoprobes as High- Performance Contrast Agents for High-Field Magnetic Resonance and Computed Tomography Imaging

被引:19
作者
Gomez-Gonzalez, Elisabet [1 ]
Nunez, Nuria O. [1 ]
Caro, Carlos [2 ,3 ]
Garcia-Martin, Maria L. [2 ,3 ]
Fernandez-Afonso, Yilian [4 ]
de la Fuente, Jesus M. [3 ,4 ]
Balcerzyk, Marcin [5 ,6 ]
Ocana, Manuel [1 ]
机构
[1] Inst Ciencia Mat Sevilla CSIC US, Seville 41092, Spain
[2] Junta Andalucia Univ Malaga, BIONAND, Andalusian Ctr Nanomed & Biotechnol, Malaga 29590, Spain
[3] CIBER BBN, Madrid 28029, Spain
[4] Univ Zaragoza, Inst Nanociencia & Mat Aragon INMA, CSIC, Zaragoza 50018, Spain
[5] Univ Seville, Ctr Nacl Aceleradores CNA, CSIC, Seville 41092, Spain
[6] Univ Seville, Fac Med, Dept Fisiol Med & Biofis, Seville 41009, Spain
关键词
NANOPARTICLES; MECHANISM; SIZE;
D O I
10.1021/acs.inorgchem.0c02601
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We describe a wet chemical method for the synthesis of uniform and well-dispersed dysprosium vanadate (DyVO4) and holmium vanadate (HoVO4) nanoparticles with an almost spherical shape and a mean size of similar to 60 nm and their functionalization with poly(acrylic acid). The transverse magnetic relaxivity of both systems at 9.4 T is analyzed on the basis of magnetic susceptibility and magnetization measurements in order to evaluate their potential for application as high-field MRI contrast agents. In addition, the X-ray attenuation properties of these systems are also studied to determine their capabilities as computed tomography contrast agent. Finally, the colloidal stability under physiological pH conditions and the cytotoxicity of the functionalized NPs are also addressed to assess their suitability for bioimaging applications.
引用
收藏
页码:152 / 160
页数:9
相关论文
共 27 条
[1]   Gd(III)-based contrast agents for MRI [J].
Aime, S ;
Botta, M ;
Terreno, E .
ADVANCES IN INORGANIC CHEMISTRY - INCLUDING BIOINORGANIC STUDIES, VOL 57: RELAXOMETRY OF WATER-METAL ION INTERACTIONS, 2005, 57 :173-237
[2]   Nanomaterials: Applications in Cancer Imaging and Therapy [J].
Barreto, Jose A. ;
O'Malley, William ;
Kubeil, Manja ;
Graham, Bim ;
Stephan, Holger ;
Spiccia, Leone .
ADVANCED MATERIALS, 2011, 23 (12) :H18-H40
[3]   Strong paramagnetic crystalline LnVO4 (Ln: Gd, Tb, Dy, Ho, Er) nanoparticles synthesized by a fabricating method [J].
Bulbul, Berna ;
Beyaz, Seda .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 173 :200-204
[4]   Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications [J].
Caravan, P ;
Ellison, JJ ;
McMurry, TJ ;
Lauffer, RB .
CHEMICAL REVIEWS, 1999, 99 (09) :2293-2352
[5]   NaDyF4 Nanoparticles as T2 Contrast Agents for Ultrahigh Field Magnetic Resonance Imaging [J].
Das, Gautom Kumar ;
Johnson, Noah J. J. ;
Cramen, Jordan ;
Blasiak, Barbara ;
Latta, Peter ;
Tomanek, Boguslaw ;
van Veggel, Frank C. J. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (04) :524-529
[6]   Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method [J].
Fang, YP ;
Xu, AW ;
Qin, AM ;
Yu, RJ .
CRYSTAL GROWTH & DESIGN, 2005, 5 (03) :1221-1225
[7]   Lanthanide-doped up-converting nanoparticles: Merits and challenges [J].
Gnach, Anna ;
Bednarkiewicz, Artur .
NANO TODAY, 2012, 7 (06) :532-563
[8]   Enhancing Luminescence and X-ray Absorption Capacity of Eu3+:LaF3 Nanoparticles by Bi3+ Codoping [J].
Gonzalez Mancebo, Daniel ;
Isabel Becerro, Ana ;
Corral, Ariadna ;
Moros, Maria ;
Balcerzyk, Marcin ;
de la Fuente, Jesus M. ;
Ocana, Manuel .
ACS OMEGA, 2019, 4 (01) :765-774
[9]   HoF3 and DyF3 Nanoparticles as Contrast Agents for High-Field Magnetic Resonance Imaging [J].
Gonzalez-Mancebo, Daniel ;
Becerro, Ana I. ;
Rojas, T. Cristina ;
Garcia-Martin, Maria L. ;
de la Fuente, Jesus M. ;
Ocana, Manuel .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2017, 34 (10)
[10]   Controlled synthesis, characterization, mechanism, and photoluminescence property of nanoerythrocyte-like HoVO4 with high uniform size and morphology [J].
He, Hongmei ;
Zhang, Youjin ;
Zhu, Wei ;
Zheng, Ao ;
Fang, Zhiyong .
JOURNAL OF CRYSTAL GROWTH, 2011, 329 (01) :71-76