Engineered nanomedicine for myeloma and bone microenvironment targeting

被引:241
作者
Swami, Archana [1 ]
Reagan, Michaela R. [2 ]
Basto, Pamela [3 ]
Mishima, Yuji [2 ]
Kamaly, Nazila [1 ]
Glavey, Siobhan [2 ]
Zhang, Sufeng [3 ]
Moschetta, Michele [2 ]
Seevaratnam, Dushanth [1 ]
Zhang, Yong [2 ]
Liu, Jinhe [1 ]
Memarzadeh, Masoumeh [2 ]
Wu, Jun [1 ]
Manier, Salomon [2 ]
Shi, Jinjun [1 ]
Bertrand, Nicolas [3 ]
Lu, Zhi Ning [2 ]
Nagano, Kenichi [4 ]
Baron, Roland [4 ]
Sacco, Antonio [2 ]
Roccaro, Aldo M. [2 ]
Farokhzad, Omid C. [1 ,5 ]
Ghobrial, Irene M. [2 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Lab Nanomed & Biomat,Dept Anesthesiol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Med, Sch Dent Med, Dept Oral Med Infect & Immun, Boston, MA 02115 USA
[5] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
targeting nanomedicine; alendronate-PLGA-PEG; bone metastasis; bisphosphonate; MULTIPLE-MYELOMA; IN-VITRO; ANTITUMOR-ACTIVITY; BORTEZOMIB; CELLS; VIVO; DEXAMETHASONE; ACTIVATION; THERAPY; PATHWAY;
D O I
10.1073/pnas.1401337111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo bio-distribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.
引用
收藏
页码:10287 / 10292
页数:6
相关论文
共 25 条
[1]   CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy [J].
Azab, Abdel Kareem ;
Runnels, Judith M. ;
Pitsillides, Costas ;
Moreau, Anne-Sophie ;
Azab, Feda ;
Leleu, Xavier ;
Jia, Xiaoying ;
Wright, Renee ;
Ospina, Beatriz ;
Carlson, Alicia L. ;
Alt, Clemens ;
Burwick, Nicholas ;
Roccaro, Aldo M. ;
Ngo, Hai T. ;
Farag, Mena ;
Melhem, Molly R. ;
Sacco, Antonio ;
Munshi, Nikhil C. ;
Hideshima, Teru ;
Rollins, Barrett J. ;
Anderson, Kenneth C. ;
Kung, Andrew L. ;
Lin, Charles P. ;
Ghobrial, Irene M. .
BLOOD, 2009, 113 (18) :4341-4351
[2]   Dual Inhibition of Akt/Mammalian Target of Rapamycin Pathway by Nanoparticle Albumin-Bound-Rapamycin and Perifosine Induces Antitumor Activity in Multiple Myeloma [J].
Cirstea, Diana ;
Hideshima, Teru ;
Rodig, Scott ;
Santo, Loredana ;
Pozzi, Samantha ;
Vallet, Sonia ;
Ikeda, Hiroshi ;
Perrone, Giulia ;
Gorgun, Gullu ;
Patel, Kishan ;
Desai, Neil ;
Sportelli, Peter ;
Kapoor, Shweta ;
Vali, Shireen ;
Mukherjee, Siddhartha ;
Munshi, Nikhil C. ;
Anderson, Kenneth C. ;
Raje, Noopur .
MOLECULAR CANCER THERAPEUTICS, 2010, 9 (04) :963-975
[3]   Metastatic bone disease: clinical features, pathophysiology and treatment strategies [J].
Coleman, RE .
CANCER TREATMENT REVIEWS, 2001, 27 (03) :165-176
[4]   Standardized Nomenclature, Symbols, and Units for Bone Histomorphometry: A 2012 Update of the Report of the ASBMR Histomorphometry Nomenclature Committee [J].
Dempster, David W. ;
Compston, Juliet E. ;
Drezner, Marc K. ;
Glorieux, Francis H. ;
Kanis, John A. ;
Malluche, Hartmut ;
Meunier, Pierre J. ;
Ott, Susan M. ;
Recker, Robert R. ;
Parfitt, A. Michael .
JOURNAL OF BONE AND MINERAL RESEARCH, 2013, 28 (01) :1-16
[5]   Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro [J].
Garrett, IR ;
Chen, D ;
Gutierrez, G ;
Zhao, M ;
Escobedo, A ;
Rossini, G ;
Harris, SE ;
Gallwitz, W ;
Kim, KB ;
Hu, S ;
Crews, CM ;
Mundy, GR .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 111 (11) :1771-1782
[6]   The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients [J].
Giuliani, Nicola ;
Morandi, Francesca ;
Tagliaferri, Sara ;
Lazzareffi, Mirca ;
Bonomini, Sabrina ;
Crugnola, Monica ;
Mancini, Cristina ;
Martella, Eugenia ;
Ferrari, Luca ;
Tabilio, Antonio ;
Rizzoli, Vittorio .
BLOOD, 2007, 110 (01) :334-338
[7]   Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment [J].
Heider, Ulrike ;
Kaiser, Martin ;
Mueller, Christian ;
Jakob, Christian ;
Zavrski, Ivana ;
Schulz, Carsten-Oliver ;
Fleissner, Claudia ;
Hecht, Monica ;
Sezer, Orhan .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2006, 77 (03) :233-238
[8]   Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile [J].
Hrkach, Jeffrey ;
Von Hoff, Daniel ;
Ali, Mir Mukkaram ;
Andrianova, Elizaveta ;
Auer, Jason ;
Campbell, Tarikh ;
De Witt, David ;
Figa, Michael ;
Figueiredo, Maria ;
Horhota, Allen ;
Low, Susan ;
McDonnell, Kevin ;
Peeke, Erick ;
Retnarajan, Beadle ;
Sabnis, Abhimanyu ;
Schnipper, Edward ;
Song, Jeffrey J. ;
Song, Young Ho ;
Summa, Jason ;
Tompsett, Douglas ;
Troiano, Greg ;
Hoven, Tina Van Geen ;
Wright, Jim ;
LoRusso, Patricia ;
Kantoff, Philip W. ;
Bander, Neil H. ;
Sweeney, Christopher ;
Farokhzad, Omid C. ;
Langer, Robert ;
Zale, Stephen .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (128)
[9]   Targeted polymeric therapeutic nanoparticles: design, development and clinical translation [J].
Kamaly, Nazila ;
Xiao, Zeyu ;
Valencia, Pedro M. ;
Radovic-Moreno, Aleksandar F. ;
Farokhzad, Omid C. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2971-3010
[10]   The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia [J].
Leleu, Xavier ;
Jia, Xiaoying ;
Runnels, Judith ;
Ngo, Hai T. ;
Moreau, Anne-Sophie ;
Farag, Mena ;
Spencer, Joel A. ;
Pitsillides, Costas M. ;
Hatjiharissi, Evdoxia ;
Roccaro, Aldo ;
O'Sullivan, Garrett ;
McMillin, Douglas W. ;
Moreno, Daisy ;
Kiziltepe, Tanyel ;
Carrasco, Ruben ;
Treon, Steven P. ;
Hideshima, Teru ;
Anderson, Kenneth C. ;
Lin, Charles P. ;
Ghobrial, Irene M. .
BLOOD, 2007, 110 (13) :4417-4426