High velocity domain wall propagation using voltage controlled magnetic anisotropy

被引:16
作者
Tan, F. N. [1 ,2 ]
Gan, W. L. [1 ]
Ang, C. C., I [1 ]
Wong, G. D. H. [1 ]
Liu, H. X. [2 ]
Poh, F. [2 ]
Lew, W. S. [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] GLOBALFOUNDRIES Singapore Pte Ltd, Singapore 738406, Singapore
基金
新加坡国家研究基金会;
关键词
MOTION;
D O I
10.1038/s41598-019-43843-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Modulation of the magnetic domain size induced by an electric field [J].
Ando, F. ;
Kakizakai, H. ;
Koyama, T. ;
Yamada, K. ;
Kawaguchi, M. ;
Kim, S. ;
Kim, K. -J. ;
Moriyama, T. ;
Chiba, D. ;
Ono, T. .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[2]  
Bauer U, 2013, NAT NANOTECHNOL, V8, P411, DOI [10.1038/nnano.2013.96, 10.1038/NNANO.2013.96]
[3]   Electric field control of domain wall propagation in Pt/Co/GdOx films [J].
Bauer, Uwe ;
Emori, Satoru ;
Beach, Geoffrey S. D. .
APPLIED PHYSICS LETTERS, 2012, 100 (19)
[4]   Domain Wall Tilting in the Presence of the Dzyaloshinskii-Moriya Interaction in Out-of-Plane Magnetized Magnetic Nanotracks [J].
Boulle, O. ;
Rohart, S. ;
Buda-Prejbeanu, L. D. ;
Jue, E. ;
Miron, I. M. ;
Pizzini, S. ;
Vogel, J. ;
Gaudin, G. ;
Thiaville, A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (21)
[5]   Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization [J].
Chiba, D. ;
Kawaguchi, M. ;
Fukami, S. ;
Ishiwata, N. ;
Shimamura, K. ;
Kobayashi, K. ;
Ono, T. .
NATURE COMMUNICATIONS, 2012, 3
[6]   Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems [J].
Dean, J. ;
Bryan, M. T. ;
Schrefl, T. ;
Allwood, D. A. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (02)
[7]   Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film [J].
Di, Kai ;
Zhang, Vanessa Li ;
Lim, Hock Siah ;
Ng, Ser Choon ;
Kuok, Meng Hau ;
Qiu, Xuepeng ;
Yang, Hyunsoo .
APPLIED PHYSICS LETTERS, 2015, 106 (05)
[8]   Reversible Electric-Field-Driven Magnetic Domain-Wall Motion [J].
Franke, Kevin J. A. ;
Van de Wiele, Ben ;
Shirahata, Yasuhiro ;
Hamalainen, Sampo J. ;
Taniyama, Tomoyasu ;
van Dijken, Sebastiaan .
PHYSICAL REVIEW X, 2015, 5 (01)
[9]  
Fukami S., VLSI TECHN 2009 S IE, P230
[10]   Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers [J].
Gonzalez, Diego Lopez ;
Shirahata, Yasuhiro ;
Van de Wiele, Ben ;
Franke, Kevin J. A. ;
Casiraghi, Arianna ;
Taniyama, Tomoyasu ;
van Dijken, Sebastiaan .
AIP ADVANCES, 2017, 7 (03)