Analytic Feynman Integral and a Change of Scale Formula for Wiener Integrals of an Unbounded Cylinder Function

被引:0
作者
Young Sik, Kim [1 ]
机构
[1] Hanyang Univ, Coll Nat Sci, Dept Math, Ind Univ Cooperat Fdn, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
TRANSFORMS;
D O I
10.1155/2020/2671474
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the behavior of the unbounded cylinder function F(x) = (integral(T)(0) alpha(1)(t)dx(t))(2k) . (integral(T)(0) alpha(2)(t)dx(t))(2k) ... (integral(T)(0) alpha(n) (t)dx(t))(2k), k = 1, 2, ... whose analytic Wiener integral and analytic Feynman integral exist, we prove some relationships among the analytic Wiener integral, the analytic Feynman integral, and the Wiener integral, and we prove a change of scale formula for the Wiener integral about the unbounded function on the Wiener space C-0[0, T].
引用
收藏
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 1987, REND CIRC MAT PA S17
[2]  
Brue M D., 1972, FUNCTIONAL TRANSFORM
[3]  
Cameron R. H., 1987, RENDICONTI CIRCO 2 S, V17, P117
[4]   Transformations of Wiener integrals under translations [J].
Cameron, RH ;
Martin, WT .
ANNALS OF MATHEMATICS, 1944, 45 :386-396
[5]   THE TRANSLATION PATHOLOGY OF WIENER SPACE [J].
CAMERON, RH .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (04) :623-627
[6]   TRANSFORMATIONS OF WIENER INTEGRALS UNDER A GENERAL CLASS OF LINEAR TRANSFORMATIONS [J].
CAMERON, RH ;
MARTIN, WT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 58 (SEP) :184-219
[7]   THE BEHAVIOR OF MEASURE AND MEASURABILITY UNDER CHANGE OF SCALE IN WIENER SPACE [J].
CAMERON, RH ;
MARTIN, WT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (02) :130-137
[8]   Generalized Integral Transforms via the Series Expressions [J].
Chung, Hyun Soo .
MATHEMATICS, 2020, 8 (04)
[9]   SELF-ADJOINTNESS OF SCHRODINGER OPERATOR AND WIENER-INTEGRAL [J].
GAYSINSKY, MD ;
GOLDSTEIN, MS .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (06) :973-990
[10]   A family of Wiener transforms associated with a pair of operators on Hilbert space [J].
Hayek, N. ;
Srivastava, H. M. ;
Gonzalez, B. J. ;
Negrin, E. R. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (01) :1-8