A Survey of Learning Causality with Data: Problems and Methods

被引:230
作者
Guo, Ruocheng [1 ]
Cheng, Lu [1 ]
Li, Jundong [2 ,3 ]
Hahn, P. Richard [4 ]
Liu, Huan [1 ]
机构
[1] Arizona State Univ, Comp Sci & Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Dept Elect & Comp Engn, Comp Sci, Tempe, AZ 85281 USA
[3] Arizona State Univ, Sch Data Sci, Tempe, AZ 85281 USA
[4] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Causal machine learning; causal inference; causal discovery; MARGINAL STRUCTURAL MODELS; DIRECTED ACYCLIC GRAPHS; PROPENSITY SCORE; REGRESSION; IDENTIFICATION; INFERENCE; SELECTION; STATISTICS; STRATIFICATION; EQUIVALENCE;
D O I
10.1145/3397269
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from-or the same as-the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
引用
收藏
页数:37
相关论文
共 164 条
[91]  
Kocaoglu M, 2017, PR MACH LEARN RES, V70
[92]   Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing [J].
Kuang, Kun ;
Cui, Peng ;
Li, Bo ;
Jiang, Meng ;
Yang, Shiqiang .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :265-274
[93]   Stable Prediction across Unknown Environments [J].
Kuang, Kun ;
Cui, Peng ;
Athey, Susan ;
Xiong, Ruoxuan ;
Li, Bo .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :1617-1626
[94]  
Kusner M.J, 2017, ADV NEURAL INFORM PR, V30, P4066
[95]  
LALONDE RJ, 1986, AM ECON REV, V76, P604
[96]  
Lattimore F, 2016, ADV NEUR IN, V29
[97]   Learning the Structure of Mixed Graphical Models [J].
Lee, Jason D. ;
Hastie, Trevor J. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (01) :230-253
[98]   Adaptive Unsupervised Feature Selection on Attributed Networks [J].
Li, Jundong ;
Guo, Ruocheng ;
Liu, Chenghao ;
Liu, Huan .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :92-100
[99]   Feature Selection: A Data Perspective [J].
Li, Jundong ;
Cheng, Kewei ;
Wang, Suhang ;
Morstatter, Fred ;
Trevino, Robert P. ;
Tang, Jiliang ;
Liu, Huan .
ACM COMPUTING SURVEYS, 2018, 50 (06)
[100]  
Li Yichuan, 2019, P BENCHCOUNCIL INT S