Active control of flow structure and unsteady aerodynamic force of box girder with leading-edge suction and trailing-edge jet

被引:19
作者
Chen, Guan-Bin [1 ,2 ]
Chen, Wen-Li [1 ,2 ]
Gao, Dong-Lai [1 ,2 ]
Yang, Zi-Feng [3 ]
机构
[1] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disast, Minist Ind & Informat Technol, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin 150090, Peoples R China
[3] Wright State Univ, Dept Mech & Mat Engn, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA
基金
中国国家自然科学基金;
关键词
Box girder; Leading-edge suction and trailing-edge jet; Suction/jet momentum coefficient; Dynamic mode decomposition; Linear stability analysis; VORTEX-INDUCED VIBRATION; CABLE-STAYED BRIDGES; CIRCULAR-CYLINDER; MODE DECOMPOSITION; SUSPENSION BRIDGE; WAKE; SECTION;
D O I
10.1016/j.expthermflusci.2020.110244
中图分类号
O414.1 [热力学];
学科分类号
摘要
An experimental study was conducted to investigate the control effectiveness and underlying mechanism of the leading-edge suction and trailing-edge jet (LSTJ) for a box girder at a Reynolds number of 2.0810(4). Four circular holes were machined in the leading edge and the trailing edge of the box girder to induce steady LSTJ flow. The strength of the LSTJ is described by a dimensionless suction/jet momentum coefficient. Pressure taps around the surface associated were used with a digital sensor array system to acquire the pressure distribution of the test model. The aerodynamic forces, which macroscopically represent the control abilities of the LSTJ, were calculated based on the surface pressure distribution. The pressure measurements indicate that the fluctuating pressure on the surface near the trailing edge was attenuated and the root-mean-square value of the lift, drag, and moment forces reduced with LSTJ control. In addition to the surface pressure measurements, particle image velocimetry (PIV) was used to obtain the flow fields of the box girder model with and without LSTJ control. Both the pressure measurement and PIV results show that a certain value of the suction/jet momentum coefficient can ensure optimum control effectiveness of the LSTJ. Moreover, the LSTJ was found to push the unsteady flow structure further downstream in the model wake. A data-processing method of dynamic mode decomposition was used to illustrate the LSTJ mechanism. The energy and Strouhal number of the main mode of the LSTJ controlled case were found to differ from the uncontrolled case. The topological structure of the main mode extracted from the flow field also showed a significant variation. Linear stability analysis of the wake flow field indicates that the control method of LSTJ changes the region of unstable flow notably. Moreover, the control effectiveness of the LSTJ at various wind angles of attack was confirmed in the present study.
引用
收藏
页数:16
相关论文
共 47 条
[1]  
Amitay M., 1997, 28 FLUID DYNAMICS C
[2]   EFFECTS OF WAKE SPLITTER PLATES ON FLOW PAST A CIRCULAR CYLINDER IN RANGE 10-4 LESS-THAN R LESS-THAN 5X10-4 [J].
APELT, CJ ;
WEST, GS ;
SZEWCZYK, AA .
JOURNAL OF FLUID MECHANICS, 1973, 61 (OCT23) :187-198
[3]   Suppressing vortex-induced vibrations via passive means [J].
Baek, H. ;
Karniadakis, G. E. .
JOURNAL OF FLUIDS AND STRUCTURES, 2009, 25 (05) :848-866
[4]   Koopman-mode decomposition of the cylinder wake [J].
Bagheri, Shervin .
JOURNAL OF FLUID MECHANICS, 2013, 726 :596-623
[5]  
Barlow B., 1999, LOW SPEED WIND TUNNE, P330
[6]   Reduction of vortex-induced oscillations of Rio-Niteroi bridge by dynamic control devices [J].
Battista, RC ;
Pfeil, MS .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2000, 84 (03) :273-288
[7]  
Boberg M, 2015, IEEE INT CONF ROBOT, P1837, DOI 10.1109/ICRA.2015.7139437
[8]  
Bruno L., 2002, Structural Engineering International, V12, P289
[9]   Self-Suction-and-Jet Control in Flow Regime and Unsteady Force for a Single Box Girder [J].
Chen, Guan-Bin ;
Zhang, Liang-Quan ;
Chen, Wen-Li ;
Gao, Dong-Lai ;
Yang, Wen-Han ;
Li, Hui .
JOURNAL OF BRIDGE ENGINEERING, 2019, 24 (08)
[10]   Passive jet control of flow around a circular cylinder [J].
Chen, Wen-Li ;
Gao, Dong-Lai ;
Yuan, Wen-Yong ;
Li, Hui ;
Hu, Hui .
EXPERIMENTS IN FLUIDS, 2015, 56 (11)