On the non-Riemannian quantity H of a Finsler metric

被引:26
作者
Mo, Xiaohuan [1 ]
机构
[1] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Finsler manifold; Non Riemannian quantity H; R-quadratic metric; CONSTANT S-CURVATURE; FLAG CURVATURE; SCALAR CURVATURE; MANIFOLDS; SPACES;
D O I
10.1016/j.difgeo.2008.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of fundamental problems in Finsler geometry is to establish some delicate equations between Riemannian invariants and non-Riemannian invariants. Inspired by results clue to Akbar-Zadeh etc., this note establishes a new fundamental equation between non-Riemannian quantity H and Riemannian quantities on a Finsler manifold. As its application, we show that all R-quadrotic Finsler metrics have vanishing non-Riemannian invariant H generalizing result previously only known in the case of Randers metric. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 13 条
[1]  
AKBARZADEH H, 1988, B ACAD ROY BEL S, V84, P281
[2]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[3]  
Báscó S, 2000, PUBL MATH-DEBRECEN, V57, P185
[4]   On the flag curvature of Finsler metrics of scalar curvature [J].
Chen, XY ;
Mo, XH ;
Shen, ZM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :762-780
[5]  
Chern S S., 2005, Riemann-Finsler Geometry
[6]  
LI B, RANDERS METRICS R QU
[7]  
Mo X., 2006, INTRO FINSLER GEOMET
[8]  
Mo XH, 2005, HOUSTON J MATH, V31, P131
[9]   On negatively curved Finsler manifolds of scalar curvature [J].
Mo, XH ;
Shen, ZM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (01) :112-120
[10]   Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties [J].
Najafi, B. ;
Shen, Z. ;
Tayebi, A. .
GEOMETRIAE DEDICATA, 2008, 131 (01) :87-97